
www.manaraa.com

Timers for Distributed Systems 1

Gabriel Ciobanu and Cristian Prisaariu 2Institute of Computer Siene, Romanian AademyBlvd. Carol 8, 700505 Ia³i, RomaniaAbstratWe deal with temporal aspets of distributed systems, introduing and studyinga new model alled timed distributed π-alulus. This model extends distributed
π-alulus with timers, transforming the ommuniation hannels into temporaryresoures. Distributed π-alulus desribes loated interations between proesseswith restrited aess to resoures. We introdue time onstraints by onsideringtimeout timers for hannels. Combining these timers with types and loations,we provide a formal framework able to desribe omplex systems with onstraintson time and on resoure aess. Its typing system and operational semantis arepresented. It is proved that the passage of time does not interfere with the typingsystem. The new model is proved to be sound by using a method based on subjetredution.Key words: timers, typing system, loations, subjet redution1 IntrodutionIn this paper we use timers and study their role in modelling omplex systemsof distributed and mobile proesses. We selet the π-alulus [10℄ as a groundplatform; this formalism is well suited for modelling systems based on om-muniating proesses. In order to emphasise the spatial aspets in distributedsystems we use an expliit notion of loation. The interation between pro-esses an be ontrolled by using various sorts. The sorts allow to restrit theuse of distributed resoures, namely loated ommuniation hannels.A ombination of loations and sorts for the π-alulus is already presentedin [6℄; the resulting alulus is alled distributed π (Dπ). In Dπ the authorsuse the word �types� (instead of �sorts�) to express ertain apabilities for theinteration hannels. Sorting is used in the π-alulus to de�ne patterns ofinterations; the sort of an interation hannel de�nes the type of the messages
1 Researh partially supported by CEEX Projet 47/2005
2 Email: gabriel�iit.tuiasi.ro and prisaariu�iit.tuiasi.ro©2006 Published by Elsevier Science B. V.



www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariusent or reeived along that hannel. By �interation between proesses� weunderstand a �ommuniation between proesses�. A ommuniation hannelis onsidered to be a �xed resoure at a ertain loation. The ommuniationis loal and ode migration is used to move proesses to the same loation,in order to ommuniate along a ommon loal hannel for whih they haveproper apabilities. The typing system o�ers the possibility to restrit theaess to resoures by tagging the proesses with a type environment, and torestrit the messages that ould be transmitted along the hannels.We take up Dπ, extending it with dereasing timers attahed to ommu-niation hannels and to hannel types. The new formalism is alled timeddistributed π-alulus (tDπ), and it is presented as a rigorous framework fordesribing distributed systems with time and resoure onstraints. The timerson hannels de�ne timeouts for ommuniations, and timers on the hanneltypes restrit the hannels availability. Whenever the timer of either a hannelor a hannel type expires, the orresponding hannel is disarded, and respe-tively the hannel type is lost. tDπ ombines the temporal onstraints withtypes and loations in order to give the possibility of modelling loated andtimed interations between distributed proesses with time restrited resoureaess. Following the method introdued in [4℄, we prove that the typing sys-tem of tDπ is sound with respet to the equivalene and redution relationsof the π-alulus. Moreover, time does not interfere with the typing system.2 Syntax and Semantis of tDπBy adding timers to ommuniation hannels, ommuniation along a hannelis no longer available for an inde�nite time (like in Dπ). If no interationhappens in the prede�ned interval of time determined by the timer value, theproess goes to another state. Eah hannel has two alternatives: one whenthe ommuniation is ahieved, and another when we have no ommuniation.The hannel timers are reated one with the hannel, but started only whenthe hannel beomes ative (available for ommuniation).2.1 tDπ SyntaxThe syntax of a Dπ hannel a is extended by tagging it with a timer ∆t; thismeans that the hannel a∆t is waiting for ommuniation only for the periodof time determined by the timer value t (namely t units of time, as we use adisrete time domain).The syntax of Input and Output ommuniation uses a pair of proesses
(P,Q). For instane, the Input expression a∆t?(X : T ).(P,Q) evolves to Pwhenever a ommuniation is established during the interval of time givenby ∆t, otherwise it evolves to Q. In this expression, the variable X of type
T is onsidered bounded only in P . We onsider timers for both input andoutput hannels. The rational behind the hoie of adding timers to outputs2



www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariuomes from the fat that in distributed systems we have both multiple lientsand multiple servers. This means that output proesses (lients) an swithfrom one server to another depending on the waiting time. In general, aninput proess awaits for a resoure for a ertain period of time, and an outputproess o�ers a resoure for a ertain period of time.Table 1: Syntax of tDπ
u ::= x| a∆t

e ::= x| k
v ::= bv| u | e| u@e| (v1,..,vn)
X::= x| X@k| (X1,..,Xn)

Variable NameTimed ChannelVariable NameLoation NameBase ValueNameLoated NameTuple of ValuesVariableLoated VariableTuple of Variables

P , Q ::= stop| P |Q| (ν u : A)P| go e.P| u∆t!〈v〉.(P,Q)| u∆t?(X :T ).(P,Q)| ∗P

M , N ::= M |N| (ν u@e : T )N| e[[P ]]Γ

TerminationCompositionChannel RestritionMovementOutputInputRepliationCompositionLoated RestritionLoated ProessThe above table de�nes in order the names, values, variables, proessesand tagged loated proesses of tDπ. For a variable X of the Input expression
a∆t?(X : T ).(P,Q) we should also provide its type T, and for the hannelname a in the Channel Restrition expression we have to provide its hanneltype A (the types are presented in Setion 2.2).Note that with the loated restrition (ν a@k : T )N we speify a newprivate hannel a and its loation k. For example, in the proess

(ν a@k : T )(l[[P ]] | k[[Q]]) | k[[Q′]]the hannel a is private to P and Q and is loated at the urrent loation k of
Q. Moreover, Q′ does not have any knowledge about hannel a even thoughit runs also at loation k. This means that proess P must move to loation
k before ommuniating on the private hannel a. Also note that the syntaxfor hannel restrition spei�es only the name of the private hannel, and notthe assoiated timer; this is beause a restrition refers only to the names ofthe hannels.The interation between proesses is given through the input and outputproess expressions whih must have the same hannel name; the hanneltimers are playing a seondary role in suh an interation.Example 2.1 The following two proesses running in parallel an interatalong the ommon hannel a. 3



www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariu

a∆t!〈v〉.(P,Q) | a∆t
′

?(X : T ).(P ′, Q′) −→ P | P ′{v/X}Intuitively, the proess on the left evolves to the proess on the right aftersuh an interation. The output proess (the proess on the left of the parallelomposition operator) sends the value v on the hannel named a and thenbehaves as P . When reeiving the value v, in the input proess (the proesson the right of the parallel omposition operator) all the ourrenes of thebound variable X are replaed by v in P ′.Waiting inde�nitely on a hannel a is allowed by onsidering ∆t as ∞.An output proess expression a∞!〈v〉.(P,Q) awaits forever to send the value
v, simulating the behaviour of an output proess in untimed synhronous π-alulus.2.2 Typing SystemEah loated proess is tagged with a type environment Γ whih is a set ofloation types denoted by K in Table 2. Formally the type environment isa mapping from loation names k to loation types K. A loation type Kmay ontain loation apabilities denoted by κ; these apabilities may expresseither apabilities of using hannel names ã with their orresponding han-nel types Ã (ã:Ã), or move apabilities go, or hannel restrition apabilities(i.e., permissions to reate private hannels) newch. A hannel type A mayontain the following hannel apabilities generially denoted by α: apability
r〈T 〉 of reading messages of type T , apability w〈T 〉 of writing messages oftype T , and apability ro〈T 〉 of reading only messages of type T . A type
T may ontain tuples (T1, . . . , Tn) of types orresponding to tuples of names,and hannel types A1, . . . , An@K orresponding to hannel names a1, . . . , anloated at a loation of type K. B represents the set of base types.We may have only one instane of the apabilities go and newch in aloation type K; they represent respetively the apability of a proess tomove to that loation, and the apability to reate private hannel names atthat loation.In order to exemplify, let us onsider a proess whih has in its type en-vironment Γ a hannel name a with a hannel type res{r〈T 〉, w〈T ′〉, ro〈T ′′〉}.This means that along this hannel a the proess an reeive messages of type
T , and send messages of type T ′. The ro apability is similar to an r apabil-ity, with the di�erene that the types of the reeived messages are not addedto the type environment of the proess. Types are aumulated when a nameis reeived along an input hannel with apability r〈 〉.Having ro〈 〉 apabilities, we an desribe proesses whih may use the datareeived in a message through an input hannel with apability ro〈 〉 only ifthere exists a proper type for the new data within their type environments.More preisely, let us onsider a proess P at loation k whih reeives a lo-ated hannel name b@k on the input hannel a of type res{ro〈T 〉}. Theloated proess k[[P ]]Γ an use the new hannel name b to ommuniate with-4



www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuTable 2: Type system and subtyping relationTypes: Subtyping:K ::= lo{κ̃}A ::= res{α̃}∆tE ::= A | K | BT ::= A | B | (T1, . . . , Tn)| A1, . . . , An@KCapabilities:
κ ::= a : A| go | newch
α ::= r〈T 〉 | w〈T 〉 | ro〈T 〉

κ <: κ
a : A <: a : B if A <: B

K <: L if ∀λ ∈ L: ∃κ ∈ K: κ <: λ

A <: B if ∀β ∈ B: ∃α ∈ A: α <: β

Ã@K <: B̃@L if K<:L and Ã<:B̃
S̃ <: T̃ if ∀i : Si <: Ti

r〈T 〉 <: r〈T ′〉 if T <: T ′

w〈S〉 <: w〈S ′〉 if S ′ <: S

ro〈T 〉 <: ro〈T ′〉if T <: T ′out generating errors only if its type environment Γ ontains at loation k theorresponding type of b, i.e., Γ(k, b) should be de�ned. Runtime errors arepresented at the end of Setion 2.3, where Table 9 ontains the rules of theerror system.In Dπ the resoures are aumulated, but they an never be disarded.We extend the hannel types of Dπ with timers of form ∆t. These timersde�ne the existene of the hannel types inside the type environment. Thetimers derease with eah "tik" of the universal lok (we assume that wehave an universal lok). Communiation ations an be performed along ahannel until the timer on its type has expired. After expiration, the hannelapabilities are disarded and any ommuniation would generate a runtimeerror. Timers are reated one with the hannel types, and they are ativatedwhen apabilities are added to the type environment.In our approah a proess an move to a ertain loation, and wait fora period of time to establish a ommuniation on a partiular hannel (a�xed loal resoure) with a omplementary proess. It is neessary to o�erapabilities as r〈T 〉, w〈T 〉, and ro〈T 〉 for these �xed resoures in order torestrit the ations performed by a proess. The apabilities for the loations,and the apabilities for the hannels from the type environment impose to aproess what ations are allowed to be exeuted at eah loation. An exampleof a type environment is:
Γ = {l : loc{a : A, b : B}, k : loc{a : A′}}where we denote by Γ(k) the type loc{a : A′} of loation k, and by Γ(l, b) thehannel type B of the hannel b loated at l. The proess of aumulatingapabilities is made expliit by using environment extensions. We denoteby Γ{k : K} an environment Γ extended with a new loation k of type K.5



www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuMoreover, onsidering Γ as above, we an extend the type environment witha new hannel c loated at k by
Γ{c@k : B′} = {l : loc{a : A, b : B}, k : loc{a : A′, c : B′}}When a proess reeives new hannel names together with their assoiatedtypes, apabilities for the new names beome available (are added to the typeenvironment of the proess). As an example, let us suppose a proess reeivinga name of a loated hannel c@k with hannel type B′ through an inputhannel with reading apability. The type of the new hannel is added to thetype environment at the orresponding loation type of k : loc{. . .}. It meansthat now the proess knows about the new hannel, and gains the apabilityto ommuniate through the aumulated hannel c aording to type B′.A subtyping relation (<:) is introdued to ompare type environments. Ifwe onsider two type environments Γ = {l : loc{ã : Ã, b̃ : B̃}} and Γ′ = {l :

loc{ã : Ã}}, then we have Γ <: Γ′ aording to the de�nition in the seondolumn of Table 2. Comparing type environments Γ and Γ′, we see that anenvironment with more apabilities (Γ) is a subtype of an environment withless apabilities (Γ′). The reason for suh an interpretation of the subtypingrelation is that Γ′ is more restritive than Γ. The subtyping relation representsthe inverse of the subset relation from the set theory; if we onsider the typeenvironments as sets of loation types, the relation above beomes Γ ⊇ Γ′.We extend both the partial meet ⊓ and partial join ⊔ operators of Dπwith the new hannel apability ro〈 〉. Intuitively the partial meet operatorbehaves as the union operator of the set theory, and the partial join operatorbehaves as the intersetion operator. We denote by a : − 6∈ K the fat thatin the loation type K there is no hannel type A for hannel a suh that
a : A ∈ K. We denote by γ any of the loation apabilities go or newch.Table 3: Partial meet operator for loations:
K ⊓K ′ = {γ | γ ∈ K or γ ∈ K ′}

∪ {a : A | a : A ∈ K and a : − 6∈ K ′}

∪ {a : A′ | a : − 6∈ K and a : A′ ∈ K ′}

∪ {a : A′′ | a : A ∈ K and a : A′ ∈ K ′ and A′′ = A ⊓A′}The partial meet operator for loation types K ⊓ K ′ is unde�ned if andonly if there exists a hannel name a suh that a : A ∈ K, a : A′ ∈ K ′ and
A ⊓A′ is unde�ned (see Table 4 for the de�nition of ⊓ for hannel types).The method of removing apabilities is formalised by a binary subtrationoperator \∆ de�ned by using a join operator ⊔ (see Table 5), and a symmetrialdi�erene operator denoted by \ similar to the one de�ned in set theory (inour ase it is applied to type environments). We write \∆ for the operationof removing from the �rst type environment all the types ontained in theseond type environment. We denote by E the set of type environments. Thesubtration operator \∆ desribed above is de�ned as \∆ : E × E → E where6



www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariu

Γ \∆ Γ′ = Γ ⊔ (Γ \ Γ′). If we onsider two type environments
Γ = {loc{a : A, b : B}} and Γ′ = {loc{b : B, c : C}},eah omposed of one loation type with two hannel types, then by applyingthe subtration operator \∆ we obtain

Γ \∆ Γ′ = loc{a : A, b : B} ⊔ (loc{a : A, b : B} \ loc{b : B, c : C}) = loc{a : A}Table 4: Partial meet operator for hannel types:Partial meet operator for hannel types (A ⊓A′) is unde�ned i�:
r〈T 〉 ∈ A and r〈T 〉 ∈ A′ and T ⊓ T ′ unde�ned
ro〈T 〉 ∈ A and ro〈T 〉 ∈ A′ and T ⊓ T ′ unde�ned
w〈S〉 ∈ A and w〈S′〉 ∈ A′ and S ⊔ S′ unde�ned
r〈T 〉 ∈ A and w〈S′〉 ∈ A′ and S′ 6<: T

w〈S〉 ∈ A and r〈T ′〉 ∈ A′ and S 6<: T ′

ro〈T 〉 ∈ A and w〈S′〉 ∈ A′ and S′ 6<: T

w〈S〉 ∈ A and ro〈T ′〉 ∈ A′ and S 6<: T ′

ro〈T 〉 ∈ A and r〈T ′〉 ∈ A′ and T ′ \∆ T unde�ned
r〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ and T \∆ T ′ unde�nedThe de�nition
A ⊓A′ = {ro〈T 〉 | ro〈T 〉 ∈ A and ro〈−〉 6∈ A′}

∪ {ro〈T ′′〉 | ro〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ and T ′′ = T ⊓ T ′}

∪ {w〈S〉 | w〈S〉 ∈ A and w〈−〉 6∈ A′}

∪ {w〈S′′〉 | w〈S〉 ∈ A and w〈S′〉 ∈ A′ and S′′ = S ⊔ S′}

∪ {ro〈T ′〉 | r〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ }
∪ {r〈T 〉 | r〈T 〉 ∈ A and ro〈−〉 6∈ A′ and r〈−〉 6∈ A′ or

r〈T 〉 ∈ A and ro〈T ′〉 ∈ A′, r〈−〉 6∈ A′ and
T ⊔ T ′ = ∅ or unde�ned}

∪ {r〈T ′′〉 | r〈T 〉 ∈ A and ro〈−〉 6∈ A′ and r〈T ′〉 ∈ A′ and T ′′ = T ⊓ T ′ or
r〈T 〉 ∈ A and ro〈S〉 ∈ A′ and r〈T ′〉 ∈ A′ and

T ′′ = T ⊓ T ′ and T ⊔ S = ∅ or unde�ned }
∪ {r〈T ′′〉 | r〈T 〉 ∈ A and ro〈T ′〉 ∈A′ and r〈−〉 6∈A′ and T ′′= T \∆ T ′ or

r〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ and r〈S〉 ∈ A′ and
T ′′ = T \∆ T ′ and T ⊔ S = ∅ or unde�ned }plus all other natural ases resulted from swapping A with A′7



www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuA proess whih has a hannel type with a apability ro〈T 〉 an reeiveonly messages of type T (or any subtype of T ) without generating errors.When the type of the hannel is extended with the apability ro〈T ′〉, then theproess is able to reeive messages of a less restritive type T ′′ = T ⊓ T ′. Wesolve the possible on�it between r〈 〉 and ro〈 〉 by providing a higher priorityto ro〈 〉 apability (beause it is more restritive than r〈 〉). In onsequene,
ro〈 〉 keeps its types and r〈 〉 loses them in favour of ro〈 〉 whenever r〈T 〉 and
ro〈T ′〉 overlap (i.e., T ⊔T ′ 6= ∅). When extending the writing apability w〈S〉with a new apability w〈S ′〉, the hannel beomes more restrited, having theapability w〈S ′′〉 where S ′′=S ⊔ S ′.We denote by r〈−〉 6∈ A the fat that there is no type T suh that r〈T 〉 ∈ A.The notations w〈−〉 6∈ A and ro〈−〉 6∈ A are de�ned similar.Table 5: The Join operator
K ⊔K ′ = {γ | γ ∈ K and γ ∈ K ′}

∪ {a : A′′ | a : A ∈ K and a : A′ ∈ K ′ and A′′ = A ⊔A′}

A ⊔A′ = {r〈T ′′〉 | r〈T 〉 ∈ A and r〈T ′〉 ∈ A′ and T ′′ = T ⊔ T ′}

∪ {ro〈T ′′〉 | ro〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ and T ′′ = T ⊔ T ′}

∪ {w〈S′′〉 | w〈S〉 ∈ A and w〈S′〉 ∈ A′ and S′′ = S ⊓ S′}Proposition 2.2i . (E , ⊔) is a ommutative monoid;ii . (E , \) is a ommutative group;iii . ⊔ is distributive over \, and (E ,\,⊔) is a ring.Proof: It is easy to observe that ⊔ and \ are ommutative, and the emptyenvironment is the identity element. The distributivity of ⊔ over \ an besimply veri�ed by translating the set operators into boolean operators, andusing the truth tables. 2We de�ne a leanup funtion ψ whih hanges the type environments a-ording to the passage of time. It dereases the timers of the hannel types,and removes the types with an expired timer. It also removes loation typeswith only go apability.De�nition 2.3 (Cleanup funtion)
ψ : LPΓ → LPΓ is de�ned over the set of tagged loated proesses LPΓ by:

ψ(l[[P ]]Γ) = l[[P ]]Γ′where l an be any loation of a distributed system, Γ′ is obtained from Γsuh that every hannel type res{α̃}∆t with t > 1 and t 6= ∞ is hanged to
res{α̃}∆(t − 1), and every res{α̃}∆1 is removed. Moreover, loation types
loc{go} are removed. 8



www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuBy removing hannel types from Γ, we get Γ′ where it is possible to haveloation types having only go apabilities. We onsider these loation typesas empty beause the only allowed ation is a movement. Even if we have
k : loc{go} in Γ′, and a sequene of movements for a proess go k.go l.P , thisproess an be redued to go l.P beause we an avoid the intermediary odemigration to loation k without losing any useful e�et. Therefore ψ removes
k : loc{go} from Γ′. A proess moving to a loation l having the type loc{go}has no other apability, thus when performing any ation (ommuniation orhannel reation) it gives rise to runtime errors.For simulating the passage of time we use a time-stepping funtion φ de-�ned over the set Pl of proesses running at an arbitrary loation l. Thepossible ommuniations are performed at eah tik of the universal lok; a-tive hannels are those whih ould be involved in these ommuniations. Thetime-stepping funtion a�ets the ative hannels whih do not ommuniateat that tik; the timers of the a�eted hannels are dereased by one unit oftime. The hannels involved in ommuniation disappear together with theirtimers. In the de�nition of the time-stepping funtion φ, we omit the hanneltype and the transmitted message in the input and output proesses in orderto simplify the presentation.De�nition 2.4 (Time-stepping funtion φ : Pl → Pl)

φ(P ) =











































a∆(t−1).(R,Q) if P = a∆t.(R,Q), t > 1 and t 6= ∞Q if P = a∆t.(R,Q), t ≤ 1

φ(R) |φ(Q) if P = R |Q

(ν a : A)φ(R) if P = (ν a : A)RP otherwiseWe also de�ne a tagged time-stepping funtion φ∆ taking are of the missingtypes. φ∆ is a global funtion de�ned by using the loal funtion φ.De�nition 2.5Tagged time-stepping funtion φ∆ : LPΓ → LPΓ is de�ned by using φ:
φ∆(l[[P ]]Γ) =



































































l[[φ(P )]]Γ′ if P = a∆t.(R,Q), t>1 and t 6= ∞or if P = a∆t.(R,Q), t ≤ 1

l[[Q]]Γ′ if P = a∆t.(R,Q), t>1and Γ ≮: Γ(l, a)

φ∆(l[[R]]Γ) |φ∆(l[[Q]]Γ) if P = R |Q

(ν a@l : A)φ∆(l[[R]]Γ{a@l:A}) if P = (ν a : A)R

l[[φ(P )]]Γ′ otherwisewhere Γ′ is obtained by applying the leanup funtion ψ.9



www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuTagged time-stepping funtion φ∆ is applied to tagged loated proesses(l[[P ]]Γ); it also hanges the type environment of the loated proess by ap-plying the leanup funtion ψ.The stati semantis of tDπ is de�ned as a set of inferene rules whihdesribe the relationship between expressions and their orresponding types.In this paper we onsider the type environment as a mapping from free namesto types. A type environment is assoiated with eah loated proess to restritthe range of resoures it may aess. The typing rules desribe the behaviourof a proess with respet to its types. A typing system is used to deide thewell-typedness of the proesses. Syntatially we write Γ ⊢ P , and say thata proess P is well-typed with respet to a type environment Γ. We also write
Γ ⊢k P and say that P is well-typed to run at loation k.Table 6: The Typing System (Typing rules)Proesses
(T-R)

Γ ⊢l a : res{r〈T 〉}∆t

fv(X) ∩ fv(Γ) = ∅

Γ{X@l : T} ⊢l P

Γ ⊢l Q

Γ ⊢l a
∆t?(X : T ).(P,Q)

(T-RO)

Γ ⊢l a : res{ro〈T 〉}∆t

fv(X) ∩ fv(Γ) = ∅

Γ ⊢l P

Γ ⊢l Q

Γ ⊢l a
∆t?(X : T ).(P,Q)

(T-W)

Γ ⊢l a : res{w〈T 〉}∆t

Γ ⊢l v : T

Γ ⊢l P

Γ ⊢l Q

Γ ⊢l a
∆t!〈v〉.(P,Q)

(T-NEWCH)

Γ(l) <: loc{newch}

a 6∈ fn(Γ)

Γ{a@l : A} ⊢l P

Γ ⊢l (ν a : A)P

(T-STR)

Γ ⊢l P

Γ ⊢l Q

Γ ⊢l stop, P |Q,*P
(T-GO)

Γ(k) <: loc{go}

Γ ⊢k P

Γ ⊢l go k.P

(T-Rnew)

a : − 6∈ Γ(l) Γ ⊢l Q

Γ ⊢l a
∆t?(X : T ).(P,Q)

(T-Wnew)

a : − 6∈ Γ(l) Γ ⊢l Q

Γ ⊢l a
∆t!〈v〉.(P,Q)Loated Proesses

(N-RUN)

∆ ⊢l P

Γ <: ∆

Γ  l[[P ]]∆

(N-SRT)

Γ  M

Γ  N

Γ  0, M |N

(N-NEWCH)

Γ(l) <: loc{newch}

a 6∈ fn(Γ)

Γ{a@l : A}  N

Γ  (νa@l : A)N10



www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuIn Table 6 we give the rules for the typing system of tDπ. Consideringthe rules (T-Rnew) and (T-Wnew), we observe that the intuitive notion of well-typedness from Dπ is no longer valid in tDπ. In our alulus we aept taggedloated proesses with missing hannel types (the types are removed with thepassage of time), and these proesses do not generate errors.In order to say that a∆t!〈v〉.(R,Q) is well-typed to run at loation k withrespet to type environment Γ, the following statements should hold:
• Γ ⊢k v : T whih means that v is a value of type T at loation k;
• Γ ⊢k a : res{w〈T 〉}∆t′ whih means that hannel a exists at loation k, andmay send values of type T for t′ units of time;
• Γ ⊢k R; Γ ⊢k Q whih means that both R and Q are well-typed to run atloation k.For a tagged loated proess k[[P ]]∆, the well-typedness relation is denotedby  and is de�ned by using the well-typedness relation ⊢k for a proess Prunning at loation k (see rule (N-RUN) in Table 6).If a proess ommuniates on a hannel for whih it has no apability, itan still be well-typed if the alternative proess Q is well-typed. We all thisseond proess the safety proess. This behaviour is re�eted in one of theases in the de�nition of φ∆.We an imagine the proess ation �ow as a binary deision tree beauseof the deision-like syntax of the hannels. At eah time step one of thefollowing alternatives must be hosen for an ation: ommuniation ation,timer expiration or move ation (see Setion 2.3 for the extension of the gooperator with a hoie syntax). An alternate de�nition for well-typedness ofproesses is: A proess is well-typed if in the ation �ow tree there exists apath from the root to a leaf whih does not generate a runtime error.Proposition 2.6 [6℄ (Weakening property)(a) If Γ  N and ∆ <: Γ then ∆  N . (for tagged loated proesses)(b) If Γ ⊢k P and ∆ <: Γ then ∆ ⊢k P . (for proesses)() If Γ ⊢k a : A and ∆ <: Γ then ∆ ⊢k a : A. (for hannels)The weakening property extends the well-typedness property of the pro-esses from a given type environment Γ to a less restritive environment ∆(whih has more apabilities). The seond statement an be read as: if P iswell-typed to run at loation k with respet to a type environment Γ and ∆is a subtype of Γ, then P is also well-typed to run at loation k with respetto the type environment ∆.Sine the leanup funtion ψ hanges the type environment ∆ by removinghannel and loation types, we are interested in whether the proess is stillwell-typed under the new type environment ∆′.Lemma 2.7 (Well-typedness is preserved by the leanup funtion)If Γ  l[[P ]]∆, then Γ  ψ(l[[P ]]∆). In other words, if Γ  l[[P ]]∆, then11



www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariu

Γ  l[[P ]]∆′ where ∆′ is obtained by removing hannel and loation typesfrom the type environment ∆.Proof: The proof proeeds by indution on the struture of P , having aase for eah proess expression. We give here only the most interesting andsigni�ant ases. For a omplete proof see the online tehnial report [12℄.Case inferred from (Composition: R | Q). By the equivalene rule (SΓ-SPLIT)we have Γ  l[[R]]∆ | l[[Q]]∆ whih, by rule (N-STR) for loated proesses,is transformed into Γ  l[[R]]∆ and Γ  l[[Q]]∆. Applying the indutionhypothesis, we obtain Γ  ψ(l[[R]]∆) and Γ  ψ(l[[Q]]∆) whih, by applying ψ,beome Γ  l[[R]]∆′ and Γ  l[[Q]]∆′ . For both proesses we have the same ∆′beause the appliation of ψ to the tagged loated proesses takes into aountonly the type environment, and in our ase the type environment is the same
∆. By applying the relation (SΓ-SPLIT) we get the result Γ  l[[R | Q]]∆′whih means Γ  ψ(l[[R | Q]]∆).Case inferred from (Restrition: (ν a:A)Q). From (N-RUN) we have ∆ ⊢l

(νa : A)Q and Γ <: ∆. By (T-NEWCH) we infer ∆{a@l : A} ⊢l Q and we alsohave Γ{a@l : A} <: ∆{a@l : A}. By applying the weakening property 2.6we infer that Γ{a@l : A}  l[[Q]]∆{a@l:A}. Applying the indution hypothesis,we get Γ{a@l : A}  ψ(l[[Q]]∆{a@l:A}) whih is equivalent to Γ{a@l : A} 

l[[Q]]∆′{a@l:A} beause the appliation of the funtion ψ does not a�et thenew name a. We apply again the (T-NEWCH) rule obtaining Γ  (νa :
A)l[[Q]]∆′{a@l:A} whih is struturally equivalent to Γ  l[[(νa : A)Q]]∆′ .Case inferred from (Movement : go k.Q). In the same way of reasoning asbefore we have ∆ ⊢l go k.Q and Γ <: ∆. By (T-GO) we get ∆ ⊢k Q and
∆(k) <: loc{go}. Using (N-RUN) we have Γ  k[[Q]]∆ whih by indutionimplies Γ  k[[Q]]∆′ . We now infer that ∆′ ⊢k Q and Γ <: ∆′ are true. Byappliation of the ψ funtion, the apability of the proess to move to loationk annot be lost. This means that ∆′(k) <: loc{go} holds and, together withwhat we obtained above and by using the rule (T-GO), we have ∆′ ⊢l go k.Qand again Γ  l[[go k.Q]]∆′. This is another syntati form of what we werelooking for, namely Γ  ψ(l[[Q]]∆).The proof proeeds in the same manner if instead of (T-GO) we use the newrules (T-GO1) and (T-GO2) de�ned in Setion 2.3.Case inferred from (Input : a∆t?(X : T ).(R,Q)). If we onsider that hannel ahas the type ro〈 〉, then from ∆ ⊢l a

∆t?(X : T ).(R,Q) and by using (T-RO) wehave the following statements: ∆ ⊢l a : res{ro〈T 〉}, fv(X)∩ fv(∆) = ∅, ∆ ⊢l

R and ∆ ⊢l Q. Applying the indution hypothesis, the last two statements aretransformed into Γ  l[[R]]∆ and Γ  l[[Q]]∆ whih provide the following twotrue statements: Γ  ψ(l[[R]]∆) and Γ  ψ(l[[Q]]∆). This means that three(fv(X) ∩ fv(∆) = ∅, ∆′ ⊢l R and ∆′ ⊢l Q) of the four statements neededby (T-RO) are true. If the leanup funtion does not remove the type of theinput hannel from the apability set, then it is valid in the new environment12



www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariu

∆′. Thus we an apply (T-RO), and obtain Γ  l[[a∆t?(X : T ).(R,Q)]]∆′. Onthe other hand, if the type of the ative hannel is missing, we an use therule (T-Rnew) and obtain the same result as before whih is equivalent to thedesired result, namely Γ ⊢ ψ(l[[a∆t?(X : T ).(R,Q)]]∆).The ases for Output, Repliation and Termination are natural, and theyfollow the proof steps of the ases presented above. 2The following lemma shows that the passage of time does not interferewith the typing system. The lemma states that if a tagged loated proess iswell-typed with respet to a type environment Γ, then the appliation of thetagged time-stepping funtion φ∆ preserves its well-typedness property.Lemma 2.8 (Tagged time passage)If Γ  l[[P ]]∆, then Γ  φ∆(l[[P ]]∆).Proof: We use indution on the inferene depth of Γ  l[[P ]]∆. From thehypothesis we derive that ∆ ⊢l P by (N-RUN), and Γ <: ∆. We get Γ ⊢l Pby using the weakening property. The proof ontinues by onsidering a asefor eah line in the de�nition of φ∆.Case inferred from (P = R |Q). Using (T-STR) we have ∆ ⊢l R and ∆ ⊢l Qwhih is equivalent to ∆ ⊢ l[[R]]; by Lemma 2.6 we get Γ  l[[R]]∆. The sameresult is obtained for proess Q. By applying the indution hypothesis, we get
Γ  φ∆(l[[R]]∆) and Γ  φ∆(l[[Q]]∆). These lead to the desired result, by theappliation of φ∆ to R |Q, i.e. Γ  φ∆(l[[P ]]∆).Case inferred from (P = a∆t.(R,Q), t ≤ 1). We have two subases, one when
a is an input hannel, and another when a is an output hannel. The resultof the appliation of φ∆ to P is l[[Q]]∆′ (with ∆′ obtained by applying theleanup funtion ψ) beause t ≤ 1. Let us onsider that a is an output hannel,and thus ∆ ⊢l a

∆t!〈v〉.(R,Q) and Γ <: ∆. Using (T-W), we get ∆ ⊢l Q, andby Lemma 2.7 we get ∆′ ⊢l Q. Sine Γ <: ∆ <: ∆′, we infer Γ  l[[Q]]∆′ .A similar proof is obtained when we onsider an input hannel, by using therules orresponding to the type of the input hannel.Case inferred from (P = a∆t.(R,Q), t>1 and Γ ≮: Γ(l, a)). This ase issimilar to the previous one, but instead of using the normal typing rules weuse (T-Rnew) and (T-Wnew) just beause the apabilities of a are not inludedin the type environment.Case inferred from (P = a∆t.(R,Q), t>1 and t6= ∞). For this ase weonsider the input expression, namely ∆ ⊢l a
∆t?(X : T ).(R,Q). In this ase

φ∆ dereases the hannel timer from a∆t to a∆t−1. From the point of view ofthe typing system, the proesses a∆t?(X : T ).(R,Q) and a∆t−1?(X : T ).(R,Q)are the same, and we an apply Lemma 2.7 and get ∆′ ⊢l a
∆t?(X : T ).(R,Q).Sine Γ <: ∆ <: ∆′, we get the onlusion Γ  l[[a∆t?(X : T ).(R,Q)]]∆′.The ase for the hannel restrition is similar, and uses the typing rule13



www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariu

(T-NEWCH). 2De�nition 2.9 We de�ne a syntati equivalene ≡ over timed hannels by
a∆t1

1 ≡ a∆t2
2 if and only if a1 = a2 and t1 = t2.If the timers of the same hannel name have di�erent values, the orre-sponding proesses have di�erent behaviour. This aspet must be onsideredwhen de�ning timed bisimulations [1℄.We de�ne the tagged strutural equivalene relation.Table 7: Tagged strutural equivalene

(SΓ-GARBAGE)

(SΓ-SPLIT)

(SΓ-COPY)

(SΓ-NEW)

(SΓ-EXTR)

(SΓ-ASSOC)

(SΓ-COMMU)

(SΓ-NEUTR)

l[[stop]]Γ ≡ stop
l[[P | Q]]Γ ≡ l[[P ]]Γ | l[[Q]]Γ

l[[*P ]]Γ ≡ l[[P ]]Γ | l[[*P ]]Γ

l[[(ν a : A)P ]]Γ ≡ (ν a@l : A)l[[P ]]∆ if a 6∈ fn(Γ) ∪ {l}where ∆ = Γ{a@l : A}

M |(νa@k : A)N ≡ (νa@k : A)(M, |N) if a 6∈ fn(M)

l[[P ]]Γ | l[[Q |R]]Γ ≡ l[[P |Q]]Γ | l[[R]]Γ

l[[P ]]Γ | l[[Q]]Γ ≡ l[[Q]]Γ | l[[P ]]Γ

l[[P ]]Γ | stop ≡ l[[P ]]ΓThe subjet redution property states that well-typedness is preserved byredution relation. This is a general approah in funtional programmingframeworks [4,11℄. We are also interested to prove that the well-typednessproperty is preserved by strutural equivalene relation. We present now suha result related to the strutural equivalene relation. A more general subjetredution theorem is presented in Setion 3.If we have two tagged loated proesses whih are struturally equivalent,and one of them is well-typed with respet to a type environment Γ, then theother proess is also well-typed with respet to type environment Γ.Theorem 2.10 (Subjet redution for tagged equivalene relation)For all tagged loated proesses N,N ′ suh that N ≡ N ′,
Γ  N if and only if Γ  N ′.Proof: We must onsider all the equivalenes given in Table 7.Case inferred from (SΓ-NEW). From hypothesis we have Γ  l[[(νa : A)P ]]∆,whih means that Γ <: ∆ and ∆ ⊢l (νa : A)P . By using (T-NEWCH) we get

∆{a@l : A} ⊢l P . By applying (N-RUN) we get ∆{a@l : A} ⊢ l[[P ]], andtogether with Γ{a@l : A} <: ∆{a@l : A} we have Γ{a@l : A}  l[[P ]]∆{a@l:A}.We apply again (T-NEWCH) for tagged proesses and get the result, namely
Γ  (νa@l : A)l[[P ]]∆{a@l:A}. 14



www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuCase inferred from (SΓ-SPLIT). We start from Γ <: ∆ and ∆ ⊢l P |Q, andby using (T-STR) we get ∆ ⊢l P and ∆ ⊢l Q. From Γ <: ∆ and (N-RUN)we get Γ  l[[P ]]∆ and Γ  l[[Q]]∆. We apply again (N-STR) and obtain theonlusion Γ  l[[P ]]∆ | l[[Q]]∆.Case inferred from (SΓ-COPY). This ase follows the steps of the previousone, and we leave it as an exerise to the reader.Case inferred from (SΓ-EXTR). For this ase we use the rules for loatedproesses. Starting from M | (νa@k : A)N and by using (N-STR), we get
Γ  M and Γ  (νa@k : A)N . Γ  (νa@k : A)N together with (N-NEWCH)infer Γ{a@k : A}  N . By weakening, and beause a 6∈ fn(Γ), we get
Γ{a@k : A}  M . We apply again (N-STR) and then (N-NEWCH), and weget the desired result Γ  (νa@k : A)(M |N).The ases inferred from (SΓ-GARBAGE) and other rules are similar to themonoid laws of the π-alulus. 22.3 Operational SemantisWe onsider the tagged loated proesses ranged over by N and M, namely Nand M an be thought as proess expressions of form l[[P ]]Γ. We denote by
6→ the fat that rules (RΓ-COM1) and (RΓ-COM2) annot be applied. Usingthese notations, we give the following redution rules providing an operationalsemantis for tDπ.Table 8: Redution relation of tDπ
(RΓ-GO)

l[[go k.P ]]Γ → ψ(k[[P ]]Γ)
(RΓ-IDLE)

l[[P ]]Γ 6→

l[[P ]]Γ → φ∆(l[[P ]]Γ)

(RΓ-COM1)
Γ(l, a) <: res{r〈T 〉}

l[[a∆t!〈v〉.(P,Q)]]∆ | l[[a∆t′?(X : T ).(P ′, Q′)]]Γ →

ψ(l[[P ]]∆) | ψ(l[[P ′{v/X}]]Γ{v@l:T})

(RΓ-COM2)
Γ(l, a) <: res{ro〈T 〉}

l[[a∆t!〈v〉.(P,Q)]]∆ | l[[a∆t′?(X : T ).(P ′, Q′)]]Γ →

ψ(l[[P ]]∆) | ψ(l[[P ′{v/X}]]Γ)

(RΓ-PAR)
N → N ′ M →M ′

N | M → N ′ | M ′
(RΓ-RES)

N → N ′

(ν a@l : A)N → (ν a@l : A)N ′

(RΓ-CONG)
N ≡ N ′ N →M M ≡M ′

N ′ →M ′15



www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuWe have two ommuniation rules whih depend on the type of the ommu-niation hannel. In (RΓ-COM2) we onsider ro〈 〉 hannels, and the proessmay use the reeived information without adding the new type to its typeenvironment Γ, ontrary to the behaviour of rule (RΓ-COM1). The ommuni-ation rules and (RΓ-GO) do not enter under the sope of φ∆. In this ase thetype environments are a�eted by the leanup funtion ψ. In (RΓ-IDLE) thefuntion φ∆ dereases the timers on hannels, and for the expired timers thefuntion disards the hannels and hanges the state of the proess. At eahtik of the universal lok, the rule (RΓ-IDLE) is applied to proesses whih donot enter any ommuniation. When applying the rule (RΓ-PAR), if proess
M does not have an internal ommuniation redution, then it is transformedinto M ′ by rule (RΓ-IDLE). The same argument is valid for N as well.Removing loation types from the type environment an lead to errorsgenerated by go ations. We solve this problem by extending the syntax of
go with a hoie syntax similar to the one given for hannels; therefore go l.Pbeomes go l.(P,Q). If Γ(l) is not de�ned, then Q is exeuted. If the loationtype of l ontains a apability go, then P is exeuted; otherwise, if the loationtype of l does not ontain a apability go, an error is generated. We shouldhange the orresponding typing rules where the operator go appears. Thus
(T-GO) is translated into (T-GO1) and (T-GO2).

(T-GO1)
k 6∈ dom(Γ) Γ ⊢l Q

Γ ⊢l go k.(P,Q)
(T-GO2)

Γ(k) : loc{go} Γ ⊢k P

Γ ⊢l go k.(P,Q)A proess P generating an error is denoted by P
err
−→. The ases when aproess generates a runtime error are de�ned by a set of rules in Table 9.robj(), roobj(), wobj() are partial funtions de�ned over the set of hanneltypes, and returning the type of the orresponding hannel apabilities. Forexample, onsidering a hannel type a : res{w〈T 〉} in the type environment Γat loation l, the appliation of wobj(Γ(l, a)) returns T . In order to derive aruntime error, the hannel type or loation type must be in the type environ-ment. A runtime error appears when a proess tries to do something againstthe types aumulated in its type environment. When a type is not in thetype environment of the proess, the safety proess is hosen by φ∆.The redution rule (RΓ-GO) annot hek if the type of the loation is inthe type environment, and onsequently we hange the time-stepping funtion

φ∆ by adding two more lines to its de�nition:






k[[R]]Γ′ if P = go k.(R,Q) and Γ(k) <: loc{go}

l[[Q]]Γ′ if P = go k.(R,Q) and k 6∈ dom(Γ)The rule (RΓ-GO) is hanged into l[[go k.(P,Q)]]Γ → φ∆(l[[go k.(P,Q)]]Γ)whih is aptured by the (RΓ-IDLE) rule. A proess of the form go k.(P,Q) isbeyond the sope of any of the redution rules RΓ, exepting (RΓ-IDLE), andso φ∆ is applied. This funtion applies one of its new lines, and hanges the16



www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuTable 9: Runtime errors
(E-GO)

Γ(k) is de�ned and Γ(k) 6<: loc{go}

l[[go k.(P,Q)]]Γ
err
−→

(E-SUBC)
Γ(l) 6<: loc{newch}

l[[(ν a : A)P ]]Γ
err
−→

(E-SND)
Γ(l, a) is de�ned and Γl(v) 6<: wobj(Γ(l, a))

l[[a∆t!〈v〉.(P,Q)]]Γ
err
−→

(E-RCV)
Γ(l, a) is de�ned and robj(Γ(l, a)) 6<: T or roobj(Γ(l, a)) 6<: T

l[[a∆t?(X : T ).(P,Q)]]Γ
err
−→

(E-COM)

Γ(l, a) and ∆(l, a) are de�ned and
wobj(Γ(l, a)) 6<: robj(∆(l, a)) or wobj(Γ(l, a)) 6<: roobj(∆(l, a))

l[[a∆t!〈v〉.(P,Q)]]Γ | l[[a∆t′?(X : T ).(P,Q)]]∆
err
−→

(E-NEW)
N

err
−→

(ν a@k : T )N
err
−→

(E-PAR)
N

err
−→

N |M
err
−→

(E-STR)
M ≡ N N

err
−→

M
err
−→proess either by allowing the movement to the new loation, or by hoosingthe safety proess.Regarding the behaviour of the tDπ system, we an say that a nondeter-ministi method is applied to selet two interating proesses for eah om-muniation hannel at eah loation of a distributed system. Afterwords theredution rules are applied, and the ommuniations are performed. φ∆ isapplied to the proesses whih do not enter in any ommuniation. The typeenvironments of the ommuniating proesses are a�eted the appliation of ψfuntion. We an say that a system desribed with tDπ satis�es the followingproperties [5℄:

• Time Determinism: at eah time only one redution rule an be applied.A possible problem ould appear only if we apply RΓ-IDLE when we anapply a ommuniation rule. However this is not possible beause RΓ-IDLEis applied only if the proess does not enter in any ommuniation (6→).
• Maximal Progress: a proess annot delay if it an enter a ommunia-tion.
• Time Continuity: to go from a proess P at time t, to a proess P ′′ attime t + ∆t, we must go through all the intermediate time steps of theinterval [t, t+ ∆t℄.Some papers whih disuss the time problem in distributed systems on-sider a global lok synhronising all the timers. Reent work [9℄ on Network17



www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuTime Synhronisation Protool (NTP) shows that it is possible to ahieve timesynhronisation in real appliations. Having this tehnology we an supposethat the theoretial assumption about a universal lok is pratial ratherthan speulation. Our global timing funtion φ∆ has to apply the loal time-stepping funtion φ for the loations of the distributed system. If we adoptthe NTP synhronisation model, we an get a guaranteed frequeny and loalosillator phase preision of no more than a few milliseonds, whih in manyases is aeptable.3 Soundness of tDπRegarding the soundness of tDπ, we follow a method based on subjet redu-tion and type safety [4℄ used also in proving the soundness of Dπ. This isa syntati approah, in ontrast to other approahes based on denotationalsemantis or strutural operational semantis.Theorem 3.1 (Subjet redution) For all tagged loated proesses(a) If N ≡ N ′ then Γ  N if and only if Γ  N ′.(b) If N → N ′ then Γ  N if and only if Γ  N ′.Proof: Part (a) is in fat Theorem 2.10; its proof is in Setion 2.2.Part (b) is similar to the result presented in [11℄ whih asserts the onsistenybetween the stati and the dynami semantis. We use the same tehnique,and proeed by indution on the depth of inferene for N → N ′. We also useLemma 2.7 whih relates time and type environments, and Lemma 2.8 whihrelates time and ommuniation hannels. More details an be found in [12℄.Case inferred from (RΓ-IDLE). This is overed by Lemma 2.8.Case inferred from (RΓ-RES). From the hypothesis we know that Γ  (νa@k :
A)N . This means that Γ{a@k : A}  N , and aording to the indutionhypothesis we have Γ  N ′. Sine Γ{a@k : A} <: Γ, then by applying theweakening property of Proposition 2.6 we get Γ{a@k : A}  N ′. Simplyapplying again (N-NEWCH) we get Γ  (νa@k : A)N ′.Case inferred from (RΓ-COM1 or RΓ-COM2). These two related rules anbe treated in the same way. Let us onsider the �rst one. Starting from
Γ  l[[a∆t!〈v〉.(P,Q)]]∆ | l[[a∆t′?(X : T ).(P ′, Q′)]]∆′ and applying (N-STR)we get Γ  l[[a∆t!〈v〉.(P,Q)]]∆ (*) and Γ  l[[a∆t′?(X : T ).(P ′, Q′)]]∆′ (**).By (N-RUN) and (*) we have ∆ ⊢l a

∆t!〈v〉.(P,Q) and with (**) we have
∆′ ⊢l a

∆t′?(X : T ).(P ′, Q′). By applying (T-W) we get ∆ ⊢l P whih togetherwith (N-RUN) give the statement Γ  l[[P ]]∆. We also have ∆ ⊢l v : T and thesubtyping reations Γ <: ∆, Γ <: ∆′ whih means that ∆(l, u) and ∆′(l, u)must agree on the type they use. So by weakening we get ∆′{v@l : T} ⊢l v : T .Now it is the moment to onsider the di�erene between (RΓ-COM1) and
(RΓ-COM2), di�erene given by the typing rule used for the type of the in-18



www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariuput hannel. By applying (T-R) we get ∆′{X@l : T} ⊢l P
′. We denoteby ∆′′ the type environment ∆′{v@l : T}. Thus, by weakening we get

∆′′{X@l : T} ⊢l P
′, and we an use the substitution lemma of [6℄ to ob-tain ∆′′ ⊢l P

′{v/X}. However Γ <: ∆′′ and so, by applying (N-RUN), we get
Γ  l[[P ′{v/X}]]∆′{v@l:T}. We apply Lemma 2.7 two times, and also (N-STR)to get the result Γ  ψ(l[[P ]]Γ) | ψ(l[[P ′{v/X}]]∆′{v@l:T}).It is easy to prove the seond inferene for (RΓ-COM2), but we have to payattention to the rules we use, beause the type of the hannel is now di�erent.Case inferred from (RΓ-PAR). We have Γ  N |M whih by applying (N-

STR) gives us Γ  N and Γ  M . We an also infer by indution that Γ ⊢ N ′.By Lemma 2.8 we have that Γ  φ(M), and we an apply again (N-STR)obtaining the result Γ  N ′ | φ(M). For the ase when M redues to M ′ byother rule than (RΓ-IDLE) (i.e., it is not a�eted by the passage of time), theproof steps are easy to �nd (and left to the reader).Thus we have onluded the subjet redution proof for the typing systemwith temporary resoures. 2Subjet redution assures us that one well-typed, a proess remains well-typed during its evolution. Note that well-typedness must be preserved byboth equivalene rules and redution rules. In the following we give a resultof type safety whih is neessary to have a omplete proof of the soundnessproperty of tDπ. The type safety property states that if a system is well-typed,then it annot generate runtime errors, and this is denoted by P err

67−→.Theorem 3.2 (Type safety)We have N err

67−→ for all tagged loated proesses N , and all type environments
Γ suh that Γ  N .Proof: The outline of the proof follows a method whih proves the ontra-positive, namely if N gives rise to a runtime error (N err

7−→) then N annot bewell-typed under any type environment Γ (Γ 6 N for all Γ). In [4℄ the authorsuse the same statement as a lemma to prove that the faulty expressions areuntypable. We use indution on the de�nition of the runtime errors, and havea proof ase for eah rule of Table 9.Case inferred from (E-SND). The rule says that l[[a∆t!〈v〉.(P,Q)]]Γ
err
7−→ if

Γ(l, a) is de�ned and Γ(l, v) 6<: wobj(Γ(l, a)). Let us onsider that there is atype environment ∆ suh that the proess generating a runtime error is well-typed under this environment, i.e., ∆  l[[a∆t!〈v〉.(P,Q)]]Γ. This means that
∆ <: Γ and Γ ⊢l a

∆t!〈v〉.(P,Q). Therefore there are two typing rules whihan be applied, depending on the type of the output hannel. If a : − 6∈ Γ(l),then we have a ontradition with the fat that Γ(l, a) must be de�ned from thede�nition of the rule. Otherwise we have to use rule (T-W), obtaining Γ ⊢l a :
res{w〈T 〉}∆t and Γ ⊢l v : T . Statement Γ ⊢l v : T implies that Γ(l, v) <: T .From Γ ⊢l a : res{w〈T 〉}∆t we get Γ(l, a) = res{w〈T 〉} (by de�nition), whih19



www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariuby appliation of the funtion wobj leads to wobj(Γ(l, a)) = T . Together with
Γ(l, v) <: T , this leads us to the ontradition Γ(l, v) <: wobj(Γ(l, a)).Case inferred from (E-GO). We have l[[gok.(P,Q)]]Γ

err
7−→ if Γ(k) is de�nedand Γ(k) 6<: loc{go}. We onsider that there exists a type environment ∆ suhthat ∆  l[[gok.(P,Q)]]Γ, and try to see if we an onlude a ontradition.If the loation k is not de�ned in the type environment Γ, then we an use

(T-GO1); however this would result in a ontradition. By using (T-GO2),we have Γ(k) : loc{go} whih means that Γ(k) <: loc{go}; we get again aontradition. Therefore we have the following statement: there is no typeenvironment ∆ suh that ∆  l[[gok.(P,Q)]]Γ and l[[gok.(P,Q)]]Γ
err
7−→.Case inferred from (E-RCV). We onsider that there exists a type environ-ment ∆ suh that ∆  l[[a∆t?(X : T ).(P,Q)]]Γ. From this we have that ∆ <: Γand Γ ⊢l a

∆t?(X : T ).(P,Q). If we onsider our input hannel to be readingonly, then we apply the rule (T-RO) and we get Γ ⊢l a : res{ro〈T 〉}∆t. Weimmediately have Γ(l, a) = res{ro〈T 〉}, and by applying the funtion roobjwe get roobj(Γ(l, a)) = T , and thus roobj(Γ(l, a)) <: T , ontraditing thede�nition.Case inferred from (E-COMM). We use the same method as before, and on-sider that there is a type environment ∆′ suh that ∆′
 l[[a∆t!〈v〉.(P,Q)]]Γ |

l[[a∆t′?(X : T ).(P ′, Q′)]]∆. By applying the rule (N-STR), and then (N-RUN),we get ∆′ <: Γ, ∆′ <: ∆, and Γ ⊢l a
∆t!〈v〉.(P,Q), ∆ ⊢l a

∆t′?(X : T ).(P ′, Q′).Using the rule (T-W), we get Γ ⊢l a : res{w〈T 〉} whih means that Γ(l, a) =
res{w〈T 〉}. We apply the funtion wobj and get wobj(Γ(l, a)) = T (1). Wesuppose that the hannel a under type environment ∆ is an r〈 〉 hannel, andinfer from ∆ ⊢l a

∆t′?(X : T ).(P ′, Q′) that ∆ ⊢l a : res{r〈T 〉}. As before, wean apply the funtion robj and get robj(∆(l, a)) = T (2). From (1) and (2)we have the ontradition wobj(Γ(l, a)) <: robj(∆(l, a)).Case inferred from (E-SUBC), (E-NEW), (E-PAR) and (E-STR). These rulesare the same as in Dπ, and the proofs are natural. 24 ConlusionTimed systems represent an ative �eld, and there are many papers devotedto this topi. In the following we ompare our approah with a reent paper[7℄ having some ommon features. The authors introdue webπ, a alulusfor distributed systems with loations, and treat failures and time. They alsouse a time-stepping funtion to derease the time stamps. Eah loation hasa private lok, but the loks are not synhronised by a universal lok. In
webπ the time stamp is attahed to a transation expression as a timeout foran entire proess (a series of ations). In our alulus, eah hannel has aprivate timer whih measures the timeout for a ommuniation, and not for a20



www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariuseries of ommuniations. An important di�erene between our alulus and
webπ is the possibility of tDπ to express resoure aess onstraints by usinga typing system.Another timed extension of the π-alulus whih shares ommon featureswith our alulus is presented in [8℄. The main ontribution of πRT -alulus isthe introdution of a timeout operator. The behaviour of the timeout operatoris the same as the behaviour of a timed hannel in our alulus. The authorsalso adopt a disrete time domain and synhronisation with a global lok.Our alulus respets three of the time properties treated in πRT : time de-terminism, time ontinuity and maximal progress. The other time propertiestreated by the authors are spei� to the design hoies adopted in πRT .The ations in our approah are atomi as in the both models above.The ommuniation of a name, and the moving with the go operator aresupposed to take no time. Instantaneous ations are also found in [2℄, where anextension of the π-alulus with time is studied. An extension with loationsto this timed π-alulus (πt) is introdued. However types are not taken intoonsideration.Our alulus adds timers on output hannels, and timers on hannel types;these features appear to be new. The ombination between the quantitativeonstraints imposed by timers and the resoure aess onstraints imposed bythe typing system provides modelling power to the new formalism tDπ. Weare interested in modelling moleular networks and biologial system [3℄. Inmoleular networks there are strit rules whih determine the next reationa moleule an take part in. These are based on reation times, quantitativeoe�ients, putative times and other external stimuli. Time represents animportant quantitative measure in moleular networks, able to impose strongonstraints on the interations between moleules or omplexes.Referenes[1℄ Bengtsson, J. and W. Yi, Timed automata: Semantis, algorithms and tools, in:J. Desel, W. Reisig and G. Rozenberg, editors, Letures on Conurreny andPetri Nets, Leture Notes in Computer Siene 3098 (2004), pp. 87�124.[2℄ Berger, M., �Towards Abstrations for Distributed Systems�, Ph.D. Thesis,Imperial College, Department of Computing (2002).[3℄ Ciobanu, G. and G. Rozenberg, editors, �Modelling in Moleular Biology�,Natural Computing Series, Springer, (2004).[4℄ Felleisen, M. and A.Wright, A syntati approah to type soundness, Informationand Computation 115 (1994), pp. 38�94.[5℄ Hennessy, M. and T. Regan, A proess algebra for timed systems, Informationand Computation 117 (1995), pp. 221�239.[6℄ Hennessy, M. and J. Riely, Resoure Aess Control in Systems of Mobile Agents,Information and Computation 173(1) (2002), pp. 82�120.21



www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariu[7℄ Laneve, C. and G. Zavattaro, Foundations of web transations., in: V. Sassone,editor, Foundations of Software Siene and Computational Strutures, LetureNotes in Computer Siene 3441 (2005), pp. 282�298.[8℄ Lee, J. and J. Zi, On modeling real-time mobile proesses, in: Proeedings 25thAustralasian Conferene on Computer Siene (2002), pp. 139�147.[9℄ Mills, D., A brief history of NTP time: memoirs of an internet timekeeper,Computer Communiation Review 33 (2003), pp. 9�21.[10℄ Milner, R., J. Parrow and D. Walker, A alulus of mobile proesses (i-ii),Information and Computation 100 (1992), pp. 1�77.[11℄ Milner, R. and M. Tofte, Co-indution in relational semantis, TheoretialComputer Siene 87 (1991), pp. 209�220.[12℄ Prisaariu, C. and G. Ciobanu, Timed distributed π-alulus, Tehnial ReportFML-05-01, Formal Methods Laboratory, Institute of Computer Siene,Romanian Aademy (2005).

22


	Introduction
	Syntax and Semantics of  tD
	 tD Syntax
	Typing System
	Operational Semantics

	Soundness of tD
	Conclusion
	References

