
www.manaraa.com

Timers for Distributed Systems 1

Gabriel Ciobanu and Cristian Prisa
ariu 2Institute of Computer S
ien
e, Romanian A
ademyBlvd. Carol 8, 700505 Ia³i, RomaniaAbstra
tWe deal with temporal aspe
ts of distributed systems, introdu
ing and studyinga new model
alled timed distributed π-
al
ulus. This model extends distributed
π-
al
ulus with timers, transforming the
ommuni
ation
hannels into temporaryresour
es. Distributed π-
al
ulus des
ribes lo
ated intera
tions between pro
esseswith restri
ted a

ess to resour
es. We introdu
e time
onstraints by
onsideringtimeout timers for
hannels. Combining these timers with types and lo
ations,we provide a formal framework able to des
ribe
omplex systems with
onstraintson time and on resour
e a

ess. Its typing system and operational semanti
s arepresented. It is proved that the passage of time does not interfere with the typingsystem. The new model is proved to be sound by using a method based on subje
tredu
tion.Key words: timers, typing system, lo
ations, subje
t redu
tion1 Introdu
tionIn this paper we use timers and study their role in modelling
omplex systemsof distributed and mobile pro
esses. We sele
t the π-
al
ulus [10℄ as a groundplatform; this formalism is well suited for modelling systems based on
om-muni
ating pro
esses. In order to emphasise the spatial aspe
ts in distributedsystems we use an expli
it notion of lo
ation. The intera
tion between pro-
esses
an be
ontrolled by using various sorts. The sorts allow to restri
t theuse of distributed resour
es, namely lo
ated
ommuni
ation
hannels.A
ombination of lo
ations and sorts for the π-
al
ulus is already presentedin [6℄; the resulting
al
ulus is
alled distributed π (Dπ). In Dπ the authorsuse the word �types� (instead of �sorts�) to express
ertain
apabilities for theintera
tion
hannels. Sorting is used in the π-
al
ulus to de�ne patterns ofintera
tions; the sort of an intera
tion
hannel de�nes the type of the messages
1 Resear
h partially supported by CEEX Proje
t 47/2005
2 Email: gabriel�iit.tuiasi.ro and
prisa
ariu�iit.tuiasi.ro
©2006 Published by Elsevier Science B. V.

www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariusent or re
eived along that
hannel. By �intera
tion between pro
esses� weunderstand a �
ommuni
ation between pro
esses�. A
ommuni
ation
hannelis
onsidered to be a �xed resour
e at a
ertain lo
ation. The
ommuni
ationis lo
al and
ode migration is used to move pro
esses to the same lo
ation,in order to
ommuni
ate along a
ommon lo
al
hannel for whi
h they haveproper
apabilities. The typing system o�ers the possibility to restri
t thea

ess to resour
es by tagging the pro
esses with a type environment, and torestri
t the messages that
ould be transmitted along the
hannels.We take up Dπ, extending it with de
reasing timers atta
hed to
ommu-ni
ation
hannels and to
hannel types. The new formalism is
alled timeddistributed π-
al
ulus (tDπ), and it is presented as a rigorous framework fordes
ribing distributed systems with time and resour
e
onstraints. The timerson
hannels de�ne timeouts for
ommuni
ations, and timers on the
hanneltypes restri
t the
hannels availability. Whenever the timer of either a
hannelor a
hannel type expires, the
orresponding
hannel is dis
arded, and respe
-tively the
hannel type is lost. tDπ
ombines the temporal
onstraints withtypes and lo
ations in order to give the possibility of modelling lo
ated andtimed intera
tions between distributed pro
esses with time restri
ted resour
ea

ess. Following the method introdu
ed in [4℄, we prove that the typing sys-tem of tDπ is sound with respe
t to the equivalen
e and redu
tion relationsof the π-
al
ulus. Moreover, time does not interfere with the typing system.2 Syntax and Semanti
s of tDπBy adding timers to
ommuni
ation
hannels,
ommuni
ation along a
hannelis no longer available for an inde�nite time (like in Dπ). If no intera
tionhappens in the prede�ned interval of time determined by the timer value, thepro
ess goes to another state. Ea
h
hannel has two alternatives: one whenthe
ommuni
ation is a
hieved, and another when we have no
ommuni
ation.The
hannel timers are
reated on
e with the
hannel, but started only whenthe
hannel be
omes a
tive (available for
ommuni
ation).2.1 tDπ SyntaxThe syntax of a Dπ
hannel a is extended by tagging it with a timer ∆t; thismeans that the
hannel a∆t is waiting for
ommuni
ation only for the periodof time determined by the timer value t (namely t units of time, as we use adis
rete time domain).The syntax of Input and Output
ommuni
ation uses a pair of pro
esses
(P,Q). For instan
e, the Input expression a∆t?(X : T).(P,Q) evolves to Pwhenever a
ommuni
ation is established during the interval of time givenby ∆t, otherwise it evolves to Q. In this expression, the variable X of type
T is
onsidered bounded only in P . We
onsider timers for both input andoutput
hannels. The rational behind the
hoi
e of adding timers to outputs2

www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariu
omes from the fa
t that in distributed systems we have both multiple
lientsand multiple servers. This means that output pro
esses (
lients)
an swit
hfrom one server to another depending on the waiting time. In general, aninput pro
ess awaits for a resour
e for a
ertain period of time, and an outputpro
ess o�ers a resour
e for a
ertain period of time.Table 1: Syntax of tDπ
u ::= x| a∆t

e ::= x| k
v ::= bv| u | e| u@e| (v1,..,vn)
X::= x| X@k| (X1,..,Xn)

Variable NameTimed ChannelVariable NameLo
ation NameBase ValueNameLo
ated NameTuple of ValuesVariableLo
ated VariableTuple of Variables

P , Q ::= stop| P |Q| (ν u : A)P| go e.P| u∆t!〈v〉.(P,Q)| u∆t?(X :T).(P,Q)| ∗P

M , N ::= M |N| (ν u@e : T)N| e[[P]]Γ

TerminationCompositionChannel Restri
tionMovementOutputInputRepli
ationCompositionLo
ated Restri
tionLo
ated Pro
essThe above table de�nes in order the names, values, variables, pro
essesand tagged lo
ated pro
esses of tDπ. For a variable X of the Input expression
a∆t?(X : T).(P,Q) we should also provide its type T, and for the
hannelname a in the Channel Restri
tion expression we have to provide its
hanneltype A (the types are presented in Se
tion 2.2).Note that with the lo
ated restri
tion (ν a@k : T)N we spe
ify a newprivate
hannel a and its lo
ation k. For example, in the pro
ess

(ν a@k : T)(l[[P]] | k[[Q]]) | k[[Q′]]the
hannel a is private to P and Q and is lo
ated at the
urrent lo
ation k of
Q. Moreover, Q′ does not have any knowledge about
hannel a even thoughit runs also at lo
ation k. This means that pro
ess P must move to lo
ation
k before
ommuni
ating on the private
hannel a. Also note that the syntaxfor
hannel restri
tion spe
i�es only the name of the private
hannel, and notthe asso
iated timer; this is be
ause a restri
tion refers only to the names ofthe
hannels.The intera
tion between pro
esses is given through the input and outputpro
ess expressions whi
h must have the same
hannel name; the
hanneltimers are playing a se
ondary role in su
h an intera
tion.Example 2.1 The following two pro
esses running in parallel
an intera
talong the
ommon
hannel a. 3

www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariu

a∆t!〈v〉.(P,Q) | a∆t
′

?(X : T).(P ′, Q′) −→ P | P ′{v/X}Intuitively, the pro
ess on the left evolves to the pro
ess on the right aftersu
h an intera
tion. The output pro
ess (the pro
ess on the left of the parallel
omposition operator) sends the value v on the
hannel named a and thenbehaves as P . When re
eiving the value v, in the input pro
ess (the pro
esson the right of the parallel
omposition operator) all the o

urren
es of thebound variable X are repla
ed by v in P ′.Waiting inde�nitely on a
hannel a is allowed by
onsidering ∆t as ∞.An output pro
ess expression a∞!〈v〉.(P,Q) awaits forever to send the value
v, simulating the behaviour of an output pro
ess in untimed syn
hronous π-
al
ulus.2.2 Typing SystemEa
h lo
ated pro
ess is tagged with a type environment Γ whi
h is a set oflo
ation types denoted by K in Table 2. Formally the type environment isa mapping from lo
ation names k to lo
ation types K. A lo
ation type Kmay
ontain lo
ation
apabilities denoted by κ; these
apabilities may expresseither
apabilities of using
hannel names ã with their
orresponding
han-nel types Ã (ã:Ã), or move
apabilities go, or
hannel restri
tion
apabilities(i.e., permissions to
reate private
hannels) newch. A
hannel type A may
ontain the following
hannel
apabilities generi
ally denoted by α:
apability
r〈T 〉 of reading messages of type T ,
apability w〈T 〉 of writing messages oftype T , and
apability ro〈T 〉 of reading only messages of type T . A type
T may
ontain tuples (T1, . . . , Tn) of types
orresponding to tuples of names,and
hannel types A1, . . . , An@K
orresponding to
hannel names a1, . . . , anlo
ated at a lo
ation of type K. B represents the set of base types.We may have only one instan
e of the
apabilities go and newch in alo
ation type K; they represent respe
tively the
apability of a pro
ess tomove to that lo
ation, and the
apability to
reate private
hannel names atthat lo
ation.In order to exemplify, let us
onsider a pro
ess whi
h has in its type en-vironment Γ a
hannel name a with a
hannel type res{r〈T 〉, w〈T ′〉, ro〈T ′′〉}.This means that along this
hannel a the pro
ess
an re
eive messages of type
T , and send messages of type T ′. The ro
apability is similar to an r
apabil-ity, with the di�eren
e that the types of the re
eived messages are not addedto the type environment of the pro
ess. Types are a

umulated when a nameis re
eived along an input
hannel with
apability r〈 〉.Having ro〈 〉
apabilities, we
an des
ribe pro
esses whi
h may use the datare
eived in a message through an input
hannel with
apability ro〈 〉 only ifthere exists a proper type for the new data within their type environments.More pre
isely, let us
onsider a pro
ess P at lo
ation k whi
h re
eives a lo-
ated
hannel name b@k on the input
hannel a of type res{ro〈T 〉}. Thelo
ated pro
ess k[[P]]Γ
an use the new
hannel name b to
ommuni
ate with-4

www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuTable 2: Type system and subtyping relationTypes: Subtyping:K ::= lo
{κ̃}A ::= res{α̃}∆tE ::= A | K | BT ::= A | B | (T1, . . . , Tn)| A1, . . . , An@KCapabilities:
κ ::= a : A| go | newch
α ::= r〈T 〉 | w〈T 〉 | ro〈T 〉

κ <: κ
a : A <: a : B if A <: B

K <: L if ∀λ ∈ L: ∃κ ∈ K: κ <: λ

A <: B if ∀β ∈ B: ∃α ∈ A: α <: β

Ã@K <: B̃@L if K<:L and Ã<:B̃
S̃ <: T̃ if ∀i : Si <: Ti

r〈T 〉 <: r〈T ′〉 if T <: T ′

w〈S〉 <: w〈S ′〉 if S ′ <: S

ro〈T 〉 <: ro〈T ′〉if T <: T ′out generating errors only if its type environment Γ
ontains at lo
ation k the
orresponding type of b, i.e., Γ(k, b) should be de�ned. Runtime errors arepresented at the end of Se
tion 2.3, where Table 9
ontains the rules of theerror system.In Dπ the resour
es are a

umulated, but they
an never be dis
arded.We extend the
hannel types of Dπ with timers of form ∆t. These timersde�ne the existen
e of the
hannel types inside the type environment. Thetimers de
rease with ea
h "ti
k" of the universal
lo
k (we assume that wehave an universal
lo
k). Communi
ation a
tions
an be performed along a
hannel until the timer on its type has expired. After expiration, the
hannel
apabilities are dis
arded and any
ommuni
ation would generate a runtimeerror. Timers are
reated on
e with the
hannel types, and they are a
tivatedwhen
apabilities are added to the type environment.In our approa
h a pro
ess
an move to a
ertain lo
ation, and wait fora period of time to establish a
ommuni
ation on a parti
ular
hannel (a�xed lo
al resour
e) with a
omplementary pro
ess. It is ne
essary to o�er
apabilities as r〈T 〉, w〈T 〉, and ro〈T 〉 for these �xed resour
es in order torestri
t the a
tions performed by a pro
ess. The
apabilities for the lo
ations,and the
apabilities for the
hannels from the type environment impose to apro
ess what a
tions are allowed to be exe
uted at ea
h lo
ation. An exampleof a type environment is:
Γ = {l : loc{a : A, b : B}, k : loc{a : A′}}where we denote by Γ(k) the type loc{a : A′} of lo
ation k, and by Γ(l, b) the
hannel type B of the
hannel b lo
ated at l. The pro
ess of a

umulating
apabilities is made expli
it by using environment extensions. We denoteby Γ{k : K} an environment Γ extended with a new lo
ation k of type K.5

www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuMoreover,
onsidering Γ as above, we
an extend the type environment witha new
hannel c lo
ated at k by
Γ{c@k : B′} = {l : loc{a : A, b : B}, k : loc{a : A′, c : B′}}When a pro
ess re
eives new
hannel names together with their asso
iatedtypes,
apabilities for the new names be
ome available (are added to the typeenvironment of the pro
ess). As an example, let us suppose a pro
ess re
eivinga name of a lo
ated
hannel c@k with
hannel type B′ through an input
hannel with reading
apability. The type of the new
hannel is added to thetype environment at the
orresponding lo
ation type of k : loc{. . .}. It meansthat now the pro
ess knows about the new
hannel, and gains the
apabilityto
ommuni
ate through the a

umulated
hannel c a

ording to type B′.A subtyping relation (<:) is introdu
ed to
ompare type environments. Ifwe
onsider two type environments Γ = {l : loc{ã : Ã, b̃ : B̃}} and Γ′ = {l :

loc{ã : Ã}}, then we have Γ <: Γ′ a

ording to the de�nition in the se
ond
olumn of Table 2. Comparing type environments Γ and Γ′, we see that anenvironment with more
apabilities (Γ) is a subtype of an environment withless
apabilities (Γ′). The reason for su
h an interpretation of the subtypingrelation is that Γ′ is more restri
tive than Γ. The subtyping relation representsthe inverse of the subset relation from the set theory; if we
onsider the typeenvironments as sets of lo
ation types, the relation above be
omes Γ ⊇ Γ′.We extend both the partial meet ⊓ and partial join ⊔ operators of Dπwith the new
hannel
apability ro〈 〉. Intuitively the partial meet operatorbehaves as the union operator of the set theory, and the partial join operatorbehaves as the interse
tion operator. We denote by a : − 6∈ K the fa
t thatin the lo
ation type K there is no
hannel type A for
hannel a su
h that
a : A ∈ K. We denote by γ any of the lo
ation
apabilities go or newch.Table 3: Partial meet operator for lo
ations:
K ⊓K ′ = {γ | γ ∈ K or γ ∈ K ′}

∪ {a : A | a : A ∈ K and a : − 6∈ K ′}

∪ {a : A′ | a : − 6∈ K and a : A′ ∈ K ′}

∪ {a : A′′ | a : A ∈ K and a : A′ ∈ K ′ and A′′ = A ⊓A′}The partial meet operator for lo
ation types K ⊓ K ′ is unde�ned if andonly if there exists a
hannel name a su
h that a : A ∈ K, a : A′ ∈ K ′ and
A ⊓A′ is unde�ned (see Table 4 for the de�nition of ⊓ for
hannel types).The method of removing
apabilities is formalised by a binary subtra
tionoperator \∆ de�ned by using a join operator ⊔ (see Table 5), and a symmetri
aldi�eren
e operator denoted by \ similar to the one de�ned in set theory (inour
ase it is applied to type environments). We write \∆ for the operationof removing from the �rst type environment all the types
ontained in these
ond type environment. We denote by E the set of type environments. Thesubtra
tion operator \∆ des
ribed above is de�ned as \∆ : E × E → E where6

www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariu

Γ \∆ Γ′ = Γ ⊔ (Γ \ Γ′). If we
onsider two type environments
Γ = {loc{a : A, b : B}} and Γ′ = {loc{b : B, c : C}},ea
h
omposed of one lo
ation type with two
hannel types, then by applyingthe subtra
tion operator \∆ we obtain

Γ \∆ Γ′ = loc{a : A, b : B} ⊔ (loc{a : A, b : B} \ loc{b : B, c : C}) = loc{a : A}Table 4: Partial meet operator for
hannel types:Partial meet operator for
hannel types (A ⊓A′) is unde�ned i�:
r〈T 〉 ∈ A and r〈T 〉 ∈ A′ and T ⊓ T ′ unde�ned
ro〈T 〉 ∈ A and ro〈T 〉 ∈ A′ and T ⊓ T ′ unde�ned
w〈S〉 ∈ A and w〈S′〉 ∈ A′ and S ⊔ S′ unde�ned
r〈T 〉 ∈ A and w〈S′〉 ∈ A′ and S′ 6<: T

w〈S〉 ∈ A and r〈T ′〉 ∈ A′ and S 6<: T ′

ro〈T 〉 ∈ A and w〈S′〉 ∈ A′ and S′ 6<: T

w〈S〉 ∈ A and ro〈T ′〉 ∈ A′ and S 6<: T ′

ro〈T 〉 ∈ A and r〈T ′〉 ∈ A′ and T ′ \∆ T unde�ned
r〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ and T \∆ T ′ unde�nedThe de�nition
A ⊓A′ = {ro〈T 〉 | ro〈T 〉 ∈ A and ro〈−〉 6∈ A′}

∪ {ro〈T ′′〉 | ro〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ and T ′′ = T ⊓ T ′}

∪ {w〈S〉 | w〈S〉 ∈ A and w〈−〉 6∈ A′}

∪ {w〈S′′〉 | w〈S〉 ∈ A and w〈S′〉 ∈ A′ and S′′ = S ⊔ S′}

∪ {ro〈T ′〉 | r〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ }
∪ {r〈T 〉 | r〈T 〉 ∈ A and ro〈−〉 6∈ A′ and r〈−〉 6∈ A′ or

r〈T 〉 ∈ A and ro〈T ′〉 ∈ A′, r〈−〉 6∈ A′ and
T ⊔ T ′ = ∅ or unde�ned}

∪ {r〈T ′′〉 | r〈T 〉 ∈ A and ro〈−〉 6∈ A′ and r〈T ′〉 ∈ A′ and T ′′ = T ⊓ T ′ or
r〈T 〉 ∈ A and ro〈S〉 ∈ A′ and r〈T ′〉 ∈ A′ and

T ′′ = T ⊓ T ′ and T ⊔ S = ∅ or unde�ned }
∪ {r〈T ′′〉 | r〈T 〉 ∈ A and ro〈T ′〉 ∈A′ and r〈−〉 6∈A′ and T ′′= T \∆ T ′ or

r〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ and r〈S〉 ∈ A′ and
T ′′ = T \∆ T ′ and T ⊔ S = ∅ or unde�ned }plus all other natural
ases resulted from swapping A with A′7

www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuA pro
ess whi
h has a
hannel type with a
apability ro〈T 〉
an re
eiveonly messages of type T (or any subtype of T) without generating errors.When the type of the
hannel is extended with the
apability ro〈T ′〉, then thepro
ess is able to re
eive messages of a less restri
tive type T ′′ = T ⊓ T ′. Wesolve the possible
on�i
t between r〈 〉 and ro〈 〉 by providing a higher priorityto ro〈 〉
apability (be
ause it is more restri
tive than r〈 〉). In
onsequen
e,
ro〈 〉 keeps its types and r〈 〉 loses them in favour of ro〈 〉 whenever r〈T 〉 and
ro〈T ′〉 overlap (i.e., T ⊔T ′ 6= ∅). When extending the writing
apability w〈S〉with a new
apability w〈S ′〉, the
hannel be
omes more restri
ted, having the
apability w〈S ′′〉 where S ′′=S ⊔ S ′.We denote by r〈−〉 6∈ A the fa
t that there is no type T su
h that r〈T 〉 ∈ A.The notations w〈−〉 6∈ A and ro〈−〉 6∈ A are de�ned similar.Table 5: The Join operator
K ⊔K ′ = {γ | γ ∈ K and γ ∈ K ′}

∪ {a : A′′ | a : A ∈ K and a : A′ ∈ K ′ and A′′ = A ⊔A′}

A ⊔A′ = {r〈T ′′〉 | r〈T 〉 ∈ A and r〈T ′〉 ∈ A′ and T ′′ = T ⊔ T ′}

∪ {ro〈T ′′〉 | ro〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ and T ′′ = T ⊔ T ′}

∪ {w〈S′′〉 | w〈S〉 ∈ A and w〈S′〉 ∈ A′ and S′′ = S ⊓ S′}Proposition 2.2i . (E , ⊔) is a
ommutative monoid;ii . (E , \) is a
ommutative group;iii . ⊔ is distributive over \, and (E ,\,⊔) is a ring.Proof: It is easy to observe that ⊔ and \ are
ommutative, and the emptyenvironment is the identity element. The distributivity of ⊔ over \
an besimply veri�ed by translating the set operators into boolean operators, andusing the truth tables. 2We de�ne a
leanup fun
tion ψ whi
h
hanges the type environments a
-
ording to the passage of time. It de
reases the timers of the
hannel types,and removes the types with an expired timer. It also removes lo
ation typeswith only go
apability.De�nition 2.3 (Cleanup fun
tion)
ψ : LPΓ → LPΓ is de�ned over the set of tagged lo
ated pro
esses LPΓ by:

ψ(l[[P]]Γ) = l[[P]]Γ′where l
an be any lo
ation of a distributed system, Γ′ is obtained from Γsu
h that every
hannel type res{α̃}∆t with t > 1 and t 6= ∞ is
hanged to
res{α̃}∆(t − 1), and every res{α̃}∆1 is removed. Moreover, lo
ation types
loc{go} are removed. 8

www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuBy removing
hannel types from Γ, we get Γ′ where it is possible to havelo
ation types having only go
apabilities. We
onsider these lo
ation typesas empty be
ause the only allowed a
tion is a movement. Even if we have
k : loc{go} in Γ′, and a sequen
e of movements for a pro
ess go k.go l.P , thispro
ess
an be redu
ed to go l.P be
ause we
an avoid the intermediary
odemigration to lo
ation k without losing any useful e�e
t. Therefore ψ removes
k : loc{go} from Γ′. A pro
ess moving to a lo
ation l having the type loc{go}has no other
apability, thus when performing any a
tion (
ommuni
ation or
hannel
reation) it gives rise to runtime errors.For simulating the passage of time we use a time-stepping fun
tion φ de-�ned over the set Pl of pro
esses running at an arbitrary lo
ation l. Thepossible
ommuni
ations are performed at ea
h ti
k of the universal
lo
k; a
-tive
hannels are those whi
h
ould be involved in these
ommuni
ations. Thetime-stepping fun
tion a�e
ts the a
tive
hannels whi
h do not
ommuni
ateat that ti
k; the timers of the a�e
ted
hannels are de
reased by one unit oftime. The
hannels involved in
ommuni
ation disappear together with theirtimers. In the de�nition of the time-stepping fun
tion φ, we omit the
hanneltype and the transmitted message in the input and output pro
esses in orderto simplify the presentation.De�nition 2.4 (Time-stepping fun
tion φ : Pl → Pl)

φ(P) =











































a∆(t−1).(R,Q) if P = a∆t.(R,Q), t > 1 and t 6= ∞Q if P = a∆t.(R,Q), t ≤ 1

φ(R) |φ(Q) if P = R |Q

(ν a : A)φ(R) if P = (ν a : A)RP otherwiseWe also de�ne a tagged time-stepping fun
tion φ∆ taking
are of the missingtypes. φ∆ is a global fun
tion de�ned by using the lo
al fun
tion φ.De�nition 2.5Tagged time-stepping fun
tion φ∆ : LPΓ → LPΓ is de�ned by using φ:
φ∆(l[[P]]Γ) =



































































l[[φ(P)]]Γ′ if P = a∆t.(R,Q), t>1 and t 6= ∞or if P = a∆t.(R,Q), t ≤ 1

l[[Q]]Γ′ if P = a∆t.(R,Q), t>1and Γ ≮: Γ(l, a)

φ∆(l[[R]]Γ) |φ∆(l[[Q]]Γ) if P = R |Q

(ν a@l : A)φ∆(l[[R]]Γ{a@l:A}) if P = (ν a : A)R

l[[φ(P)]]Γ′ otherwisewhere Γ′ is obtained by applying the
leanup fun
tion ψ.9

www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuTagged time-stepping fun
tion φ∆ is applied to tagged lo
ated pro
esses(l[[P]]Γ); it also
hanges the type environment of the lo
ated pro
ess by ap-plying the
leanup fun
tion ψ.The stati
 semanti
s of tDπ is de�ned as a set of inferen
e rules whi
hdes
ribe the relationship between expressions and their
orresponding types.In this paper we
onsider the type environment as a mapping from free namesto types. A type environment is asso
iated with ea
h lo
ated pro
ess to restri
tthe range of resour
es it may a

ess. The typing rules des
ribe the behaviourof a pro
ess with respe
t to its types. A typing system is used to de
ide thewell-typedness of the pro
esses. Synta
ti
ally we write Γ ⊢ P , and say thata pro
ess P is well-typed with respe
t to a type environment Γ. We also write
Γ ⊢k P and say that P is well-typed to run at lo
ation k.Table 6: The Typing System (Typing rules)Pro
esses
(T-R)

Γ ⊢l a : res{r〈T 〉}∆t

fv(X) ∩ fv(Γ) = ∅

Γ{X@l : T} ⊢l P

Γ ⊢l Q

Γ ⊢l a
∆t?(X : T).(P,Q)

(T-RO)

Γ ⊢l a : res{ro〈T 〉}∆t

fv(X) ∩ fv(Γ) = ∅

Γ ⊢l P

Γ ⊢l Q

Γ ⊢l a
∆t?(X : T).(P,Q)

(T-W)

Γ ⊢l a : res{w〈T 〉}∆t

Γ ⊢l v : T

Γ ⊢l P

Γ ⊢l Q

Γ ⊢l a
∆t!〈v〉.(P,Q)

(T-NEWCH)

Γ(l) <: loc{newch}

a 6∈ fn(Γ)

Γ{a@l : A} ⊢l P

Γ ⊢l (ν a : A)P

(T-STR)

Γ ⊢l P

Γ ⊢l Q

Γ ⊢l stop, P |Q,*P
(T-GO)

Γ(k) <: loc{go}

Γ ⊢k P

Γ ⊢l go k.P

(T-Rnew)

a : − 6∈ Γ(l) Γ ⊢l Q

Γ ⊢l a
∆t?(X : T).(P,Q)

(T-Wnew)

a : − 6∈ Γ(l) Γ ⊢l Q

Γ ⊢l a
∆t!〈v〉.(P,Q)Lo
ated Pro
esses

(N-RUN)

∆ ⊢l P

Γ <: ∆

Γ
 l[[P]]∆

(N-SRT)

Γ
 M

Γ
 N

Γ
 0, M |N

(N-NEWCH)

Γ(l) <: loc{newch}

a 6∈ fn(Γ)

Γ{a@l : A}
 N

Γ
 (νa@l : A)N10

www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuIn Table 6 we give the rules for the typing system of tDπ. Consideringthe rules (T-Rnew) and (T-Wnew), we observe that the intuitive notion of well-typedness from Dπ is no longer valid in tDπ. In our
al
ulus we a

ept taggedlo
ated pro
esses with missing
hannel types (the types are removed with thepassage of time), and these pro
esses do not generate errors.In order to say that a∆t!〈v〉.(R,Q) is well-typed to run at lo
ation k withrespe
t to type environment Γ, the following statements should hold:
• Γ ⊢k v : T whi
h means that v is a value of type T at lo
ation k;
• Γ ⊢k a : res{w〈T 〉}∆t′ whi
h means that
hannel a exists at lo
ation k, andmay send values of type T for t′ units of time;
• Γ ⊢k R; Γ ⊢k Q whi
h means that both R and Q are well-typed to run atlo
ation k.For a tagged lo
ated pro
ess k[[P]]∆, the well-typedness relation is denotedby
 and is de�ned by using the well-typedness relation ⊢k for a pro
ess Prunning at lo
ation k (see rule (N-RUN) in Table 6).If a pro
ess
ommuni
ates on a
hannel for whi
h it has no
apability, it
an still be well-typed if the alternative pro
ess Q is well-typed. We
all thisse
ond pro
ess the safety pro
ess. This behaviour is re�e
ted in one of the
ases in the de�nition of φ∆.We
an imagine the pro
ess a
tion �ow as a binary de
ision tree be
auseof the de
ision-like syntax of the
hannels. At ea
h time step one of thefollowing alternatives must be
hosen for an a
tion:
ommuni
ation a
tion,timer expiration or move a
tion (see Se
tion 2.3 for the extension of the gooperator with a
hoi
e syntax). An alternate de�nition for well-typedness ofpro
esses is: A pro
ess is well-typed if in the a
tion �ow tree there exists apath from the root to a leaf whi
h does not generate a runtime error.Proposition 2.6 [6℄ (Weakening property)(a) If Γ
 N and ∆ <: Γ then ∆
 N . (for tagged lo
ated pro
esses)(b) If Γ ⊢k P and ∆ <: Γ then ∆ ⊢k P . (for pro
esses)(
) If Γ ⊢k a : A and ∆ <: Γ then ∆ ⊢k a : A. (for
hannels)The weakening property extends the well-typedness property of the pro-
esses from a given type environment Γ to a less restri
tive environment ∆(whi
h has more
apabilities). The se
ond statement
an be read as: if P iswell-typed to run at lo
ation k with respe
t to a type environment Γ and ∆is a subtype of Γ, then P is also well-typed to run at lo
ation k with respe
tto the type environment ∆.Sin
e the
leanup fun
tion ψ
hanges the type environment ∆ by removing
hannel and lo
ation types, we are interested in whether the pro
ess is stillwell-typed under the new type environment ∆′.Lemma 2.7 (Well-typedness is preserved by the
leanup fun
tion)If Γ
 l[[P]]∆, then Γ
 ψ(l[[P]]∆). In other words, if Γ
 l[[P]]∆, then11

www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariu

Γ
 l[[P]]∆′ where ∆′ is obtained by removing
hannel and lo
ation typesfrom the type environment ∆.Proof: The proof pro
eeds by indu
tion on the stru
ture of P , having a
ase for ea
h pro
ess expression. We give here only the most interesting andsigni�
ant
ases. For a
omplete proof see the online te
hni
al report [12℄.Case inferred from (Composition: R | Q). By the equivalen
e rule (SΓ-SPLIT)we have Γ
 l[[R]]∆ | l[[Q]]∆ whi
h, by rule (N-STR) for lo
ated pro
esses,is transformed into Γ
 l[[R]]∆ and Γ
 l[[Q]]∆. Applying the indu
tionhypothesis, we obtain Γ
 ψ(l[[R]]∆) and Γ
 ψ(l[[Q]]∆) whi
h, by applying ψ,be
ome Γ
 l[[R]]∆′ and Γ
 l[[Q]]∆′ . For both pro
esses we have the same ∆′be
ause the appli
ation of ψ to the tagged lo
ated pro
esses takes into a

ountonly the type environment, and in our
ase the type environment is the same
∆. By applying the relation (SΓ-SPLIT) we get the result Γ
 l[[R | Q]]∆′whi
h means Γ
 ψ(l[[R | Q]]∆).Case inferred from (Restri
tion: (ν a:A)Q). From (N-RUN) we have ∆ ⊢l

(νa : A)Q and Γ <: ∆. By (T-NEWCH) we infer ∆{a@l : A} ⊢l Q and we alsohave Γ{a@l : A} <: ∆{a@l : A}. By applying the weakening property 2.6we infer that Γ{a@l : A}
 l[[Q]]∆{a@l:A}. Applying the indu
tion hypothesis,we get Γ{a@l : A}
 ψ(l[[Q]]∆{a@l:A}) whi
h is equivalent to Γ{a@l : A}

l[[Q]]∆′{a@l:A} be
ause the appli
ation of the fun
tion ψ does not a�e
t thenew name a. We apply again the (T-NEWCH) rule obtaining Γ
 (νa :
A)l[[Q]]∆′{a@l:A} whi
h is stru
turally equivalent to Γ
 l[[(νa : A)Q]]∆′ .Case inferred from (Movement : go k.Q). In the same way of reasoning asbefore we have ∆ ⊢l go k.Q and Γ <: ∆. By (T-GO) we get ∆ ⊢k Q and
∆(k) <: loc{go}. Using (N-RUN) we have Γ
 k[[Q]]∆ whi
h by indu
tionimplies Γ
 k[[Q]]∆′ . We now infer that ∆′ ⊢k Q and Γ <: ∆′ are true. Byappli
ation of the ψ fun
tion, the
apability of the pro
ess to move to lo
ationk
annot be lost. This means that ∆′(k) <: loc{go} holds and, together withwhat we obtained above and by using the rule (T-GO), we have ∆′ ⊢l go k.Qand again Γ
 l[[go k.Q]]∆′. This is another synta
ti
 form of what we werelooking for, namely Γ
 ψ(l[[Q]]∆).The proof pro
eeds in the same manner if instead of (T-GO) we use the newrules (T-GO1) and (T-GO2) de�ned in Se
tion 2.3.Case inferred from (Input : a∆t?(X : T).(R,Q)). If we
onsider that
hannel ahas the type ro〈 〉, then from ∆ ⊢l a

∆t?(X : T).(R,Q) and by using (T-RO) wehave the following statements: ∆ ⊢l a : res{ro〈T 〉}, fv(X)∩ fv(∆) = ∅, ∆ ⊢l

R and ∆ ⊢l Q. Applying the indu
tion hypothesis, the last two statements aretransformed into Γ
 l[[R]]∆ and Γ
 l[[Q]]∆ whi
h provide the following twotrue statements: Γ
 ψ(l[[R]]∆) and Γ
 ψ(l[[Q]]∆). This means that three(fv(X) ∩ fv(∆) = ∅, ∆′ ⊢l R and ∆′ ⊢l Q) of the four statements neededby (T-RO) are true. If the
leanup fun
tion does not remove the type of theinput
hannel from the
apability set, then it is valid in the new environment12

www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariu

∆′. Thus we
an apply (T-RO), and obtain Γ
 l[[a∆t?(X : T).(R,Q)]]∆′. Onthe other hand, if the type of the a
tive
hannel is missing, we
an use therule (T-Rnew) and obtain the same result as before whi
h is equivalent to thedesired result, namely Γ ⊢ ψ(l[[a∆t?(X : T).(R,Q)]]∆).The
ases for Output, Repli
ation and Termination are natural, and theyfollow the proof steps of the
ases presented above. 2The following lemma shows that the passage of time does not interferewith the typing system. The lemma states that if a tagged lo
ated pro
ess iswell-typed with respe
t to a type environment Γ, then the appli
ation of thetagged time-stepping fun
tion φ∆ preserves its well-typedness property.Lemma 2.8 (Tagged time passage)If Γ
 l[[P]]∆, then Γ
 φ∆(l[[P]]∆).Proof: We use indu
tion on the inferen
e depth of Γ
 l[[P]]∆. From thehypothesis we derive that ∆ ⊢l P by (N-RUN), and Γ <: ∆. We get Γ ⊢l Pby using the weakening property. The proof
ontinues by
onsidering a
asefor ea
h line in the de�nition of φ∆.Case inferred from (P = R |Q). Using (T-STR) we have ∆ ⊢l R and ∆ ⊢l Qwhi
h is equivalent to ∆ ⊢ l[[R]]; by Lemma 2.6 we get Γ
 l[[R]]∆. The sameresult is obtained for pro
ess Q. By applying the indu
tion hypothesis, we get
Γ
 φ∆(l[[R]]∆) and Γ
 φ∆(l[[Q]]∆). These lead to the desired result, by theappli
ation of φ∆ to R |Q, i.e. Γ
 φ∆(l[[P]]∆).Case inferred from (P = a∆t.(R,Q), t ≤ 1). We have two sub
ases, one when
a is an input
hannel, and another when a is an output
hannel. The resultof the appli
ation of φ∆ to P is l[[Q]]∆′ (with ∆′ obtained by applying the
leanup fun
tion ψ) be
ause t ≤ 1. Let us
onsider that a is an output
hannel,and thus ∆ ⊢l a

∆t!〈v〉.(R,Q) and Γ <: ∆. Using (T-W), we get ∆ ⊢l Q, andby Lemma 2.7 we get ∆′ ⊢l Q. Sin
e Γ <: ∆ <: ∆′, we infer Γ
 l[[Q]]∆′ .A similar proof is obtained when we
onsider an input
hannel, by using therules
orresponding to the type of the input
hannel.Case inferred from (P = a∆t.(R,Q), t>1 and Γ ≮: Γ(l, a)). This
ase issimilar to the previous one, but instead of using the normal typing rules weuse (T-Rnew) and (T-Wnew) just be
ause the
apabilities of a are not in
ludedin the type environment.Case inferred from (P = a∆t.(R,Q), t>1 and t6= ∞). For this
ase we
onsider the input expression, namely ∆ ⊢l a
∆t?(X : T).(R,Q). In this
ase

φ∆ de
reases the
hannel timer from a∆t to a∆t−1. From the point of view ofthe typing system, the pro
esses a∆t?(X : T).(R,Q) and a∆t−1?(X : T).(R,Q)are the same, and we
an apply Lemma 2.7 and get ∆′ ⊢l a
∆t?(X : T).(R,Q).Sin
e Γ <: ∆ <: ∆′, we get the
on
lusion Γ
 l[[a∆t?(X : T).(R,Q)]]∆′.The
ase for the
hannel restri
tion is similar, and uses the typing rule13

www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariu

(T-NEWCH). 2De�nition 2.9 We de�ne a synta
ti
 equivalen
e ≡ over timed
hannels by
a∆t1

1 ≡ a∆t2
2 if and only if a1 = a2 and t1 = t2.If the timers of the same
hannel name have di�erent values, the
orre-sponding pro
esses have di�erent behaviour. This aspe
t must be
onsideredwhen de�ning timed bisimulations [1℄.We de�ne the tagged stru
tural equivalen
e relation.Table 7: Tagged stru
tural equivalen
e

(SΓ-GARBAGE)

(SΓ-SPLIT)

(SΓ-COPY)

(SΓ-NEW)

(SΓ-EXTR)

(SΓ-ASSOC)

(SΓ-COMMU)

(SΓ-NEUTR)

l[[stop]]Γ ≡ stop
l[[P | Q]]Γ ≡ l[[P]]Γ | l[[Q]]Γ

l[[*P]]Γ ≡ l[[P]]Γ | l[[*P]]Γ

l[[(ν a : A)P]]Γ ≡ (ν a@l : A)l[[P]]∆ if a 6∈ fn(Γ) ∪ {l}where ∆ = Γ{a@l : A}

M |(νa@k : A)N ≡ (νa@k : A)(M, |N) if a 6∈ fn(M)

l[[P]]Γ | l[[Q |R]]Γ ≡ l[[P |Q]]Γ | l[[R]]Γ

l[[P]]Γ | l[[Q]]Γ ≡ l[[Q]]Γ | l[[P]]Γ

l[[P]]Γ | stop ≡ l[[P]]ΓThe subje
t redu
tion property states that well-typedness is preserved byredu
tion relation. This is a general approa
h in fun
tional programmingframeworks [4,11℄. We are also interested to prove that the well-typednessproperty is preserved by stru
tural equivalen
e relation. We present now su
ha result related to the stru
tural equivalen
e relation. A more general subje
tredu
tion theorem is presented in Se
tion 3.If we have two tagged lo
ated pro
esses whi
h are stru
turally equivalent,and one of them is well-typed with respe
t to a type environment Γ, then theother pro
ess is also well-typed with respe
t to type environment Γ.Theorem 2.10 (Subje
t redu
tion for tagged equivalen
e relation)For all tagged lo
ated pro
esses N,N ′ su
h that N ≡ N ′,
Γ
 N if and only if Γ
 N ′.Proof: We must
onsider all the equivalen
es given in Table 7.Case inferred from (SΓ-NEW). From hypothesis we have Γ
 l[[(νa : A)P]]∆,whi
h means that Γ <: ∆ and ∆ ⊢l (νa : A)P . By using (T-NEWCH) we get

∆{a@l : A} ⊢l P . By applying (N-RUN) we get ∆{a@l : A} ⊢ l[[P]], andtogether with Γ{a@l : A} <: ∆{a@l : A} we have Γ{a@l : A}
 l[[P]]∆{a@l:A}.We apply again (T-NEWCH) for tagged pro
esses and get the result, namely
Γ
 (νa@l : A)l[[P]]∆{a@l:A}. 14

www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuCase inferred from (SΓ-SPLIT). We start from Γ <: ∆ and ∆ ⊢l P |Q, andby using (T-STR) we get ∆ ⊢l P and ∆ ⊢l Q. From Γ <: ∆ and (N-RUN)we get Γ
 l[[P]]∆ and Γ
 l[[Q]]∆. We apply again (N-STR) and obtain the
on
lusion Γ
 l[[P]]∆ | l[[Q]]∆.Case inferred from (SΓ-COPY). This
ase follows the steps of the previousone, and we leave it as an exer
ise to the reader.Case inferred from (SΓ-EXTR). For this
ase we use the rules for lo
atedpro
esses. Starting from M | (νa@k : A)N and by using (N-STR), we get
Γ
 M and Γ
 (νa@k : A)N . Γ
 (νa@k : A)N together with (N-NEWCH)infer Γ{a@k : A}
 N . By weakening, and be
ause a 6∈ fn(Γ), we get
Γ{a@k : A}
 M . We apply again (N-STR) and then (N-NEWCH), and weget the desired result Γ
 (νa@k : A)(M |N).The
ases inferred from (SΓ-GARBAGE) and other rules are similar to themonoid laws of the π-
al
ulus. 22.3 Operational Semanti
sWe
onsider the tagged lo
ated pro
esses ranged over by N and M, namely Nand M
an be thought as pro
ess expressions of form l[[P]]Γ. We denote by
6→ the fa
t that rules (RΓ-COM1) and (RΓ-COM2)
annot be applied. Usingthese notations, we give the following redu
tion rules providing an operationalsemanti
s for tDπ.Table 8: Redu
tion relation of tDπ
(RΓ-GO)

l[[go k.P]]Γ → ψ(k[[P]]Γ)
(RΓ-IDLE)

l[[P]]Γ 6→

l[[P]]Γ → φ∆(l[[P]]Γ)

(RΓ-COM1)
Γ(l, a) <: res{r〈T 〉}

l[[a∆t!〈v〉.(P,Q)]]∆ | l[[a∆t′?(X : T).(P ′, Q′)]]Γ →

ψ(l[[P]]∆) | ψ(l[[P ′{v/X}]]Γ{v@l:T})

(RΓ-COM2)
Γ(l, a) <: res{ro〈T 〉}

l[[a∆t!〈v〉.(P,Q)]]∆ | l[[a∆t′?(X : T).(P ′, Q′)]]Γ →

ψ(l[[P]]∆) | ψ(l[[P ′{v/X}]]Γ)

(RΓ-PAR)
N → N ′ M →M ′

N | M → N ′ | M ′
(RΓ-RES)

N → N ′

(ν a@l : A)N → (ν a@l : A)N ′

(RΓ-CONG)
N ≡ N ′ N →M M ≡M ′

N ′ →M ′15

www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuWe have two
ommuni
ation rules whi
h depend on the type of the
ommu-ni
ation
hannel. In (RΓ-COM2) we
onsider ro〈 〉
hannels, and the pro
essmay use the re
eived information without adding the new type to its typeenvironment Γ,
ontrary to the behaviour of rule (RΓ-COM1). The
ommuni-
ation rules and (RΓ-GO) do not enter under the s
ope of φ∆. In this
ase thetype environments are a�e
ted by the
leanup fun
tion ψ. In (RΓ-IDLE) thefun
tion φ∆ de
reases the timers on
hannels, and for the expired timers thefun
tion dis
ards the
hannels and
hanges the state of the pro
ess. At ea
hti
k of the universal
lo
k, the rule (RΓ-IDLE) is applied to pro
esses whi
h donot enter any
ommuni
ation. When applying the rule (RΓ-PAR), if pro
ess
M does not have an internal
ommuni
ation redu
tion, then it is transformedinto M ′ by rule (RΓ-IDLE). The same argument is valid for N as well.Removing lo
ation types from the type environment
an lead to errorsgenerated by go a
tions. We solve this problem by extending the syntax of
go with a
hoi
e syntax similar to the one given for
hannels; therefore go l.Pbe
omes go l.(P,Q). If Γ(l) is not de�ned, then Q is exe
uted. If the lo
ationtype of l
ontains a
apability go, then P is exe
uted; otherwise, if the lo
ationtype of l does not
ontain a
apability go, an error is generated. We should
hange the
orresponding typing rules where the operator go appears. Thus
(T-GO) is translated into (T-GO1) and (T-GO2).

(T-GO1)
k 6∈ dom(Γ) Γ ⊢l Q

Γ ⊢l go k.(P,Q)
(T-GO2)

Γ(k) : loc{go} Γ ⊢k P

Γ ⊢l go k.(P,Q)A pro
ess P generating an error is denoted by P
err
−→. The
ases when apro
ess generates a runtime error are de�ned by a set of rules in Table 9.robj(), roobj(), wobj() are partial fun
tions de�ned over the set of
hanneltypes, and returning the type of the
orresponding
hannel
apabilities. Forexample,
onsidering a
hannel type a : res{w〈T 〉} in the type environment Γat lo
ation l, the appli
ation of wobj(Γ(l, a)) returns T . In order to derive aruntime error, the
hannel type or lo
ation type must be in the type environ-ment. A runtime error appears when a pro
ess tries to do something againstthe types a

umulated in its type environment. When a type is not in thetype environment of the pro
ess, the safety pro
ess is
hosen by φ∆.The redu
tion rule (RΓ-GO)
annot
he
k if the type of the lo
ation is inthe type environment, and
onsequently we
hange the time-stepping fun
tion

φ∆ by adding two more lines to its de�nition:






k[[R]]Γ′ if P = go k.(R,Q) and Γ(k) <: loc{go}

l[[Q]]Γ′ if P = go k.(R,Q) and k 6∈ dom(Γ)The rule (RΓ-GO) is
hanged into l[[go k.(P,Q)]]Γ → φ∆(l[[go k.(P,Q)]]Γ)whi
h is
aptured by the (RΓ-IDLE) rule. A pro
ess of the form go k.(P,Q) isbeyond the s
ope of any of the redu
tion rules RΓ, ex
epting (RΓ-IDLE), andso φ∆ is applied. This fun
tion applies one of its new lines, and
hanges the16

www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuTable 9: Runtime errors
(E-GO)

Γ(k) is de�ned and Γ(k) 6<: loc{go}

l[[go k.(P,Q)]]Γ
err
−→

(E-SUBC)
Γ(l) 6<: loc{newch}

l[[(ν a : A)P]]Γ
err
−→

(E-SND)
Γ(l, a) is de�ned and Γl(v) 6<: wobj(Γ(l, a))

l[[a∆t!〈v〉.(P,Q)]]Γ
err
−→

(E-RCV)
Γ(l, a) is de�ned and robj(Γ(l, a)) 6<: T or roobj(Γ(l, a)) 6<: T

l[[a∆t?(X : T).(P,Q)]]Γ
err
−→

(E-COM)

Γ(l, a) and ∆(l, a) are de�ned and
wobj(Γ(l, a)) 6<: robj(∆(l, a)) or wobj(Γ(l, a)) 6<: roobj(∆(l, a))

l[[a∆t!〈v〉.(P,Q)]]Γ | l[[a∆t′?(X : T).(P,Q)]]∆
err
−→

(E-NEW)
N

err
−→

(ν a@k : T)N
err
−→

(E-PAR)
N

err
−→

N |M
err
−→

(E-STR)
M ≡ N N

err
−→

M
err
−→pro
ess either by allowing the movement to the new lo
ation, or by
hoosingthe safety pro
ess.Regarding the behaviour of the tDπ system, we
an say that a nondeter-ministi
 method is applied to sele
t two intera
ting pro
esses for ea
h
om-muni
ation
hannel at ea
h lo
ation of a distributed system. Afterwords theredu
tion rules are applied, and the
ommuni
ations are performed. φ∆ isapplied to the pro
esses whi
h do not enter in any
ommuni
ation. The typeenvironments of the
ommuni
ating pro
esses are a�e
ted the appli
ation of ψfun
tion. We
an say that a system des
ribed with tDπ satis�es the followingproperties [5℄:

• Time Determinism: at ea
h time only one redu
tion rule
an be applied.A possible problem
ould appear only if we apply RΓ-IDLE when we
anapply a
ommuni
ation rule. However this is not possible be
ause RΓ-IDLEis applied only if the pro
ess does not enter in any
ommuni
ation (6→).
• Maximal Progress: a pro
ess
annot delay if it
an enter a
ommuni
a-tion.
• Time Continuity: to go from a pro
ess P at time t, to a pro
ess P ′′ attime t + ∆t, we must go through all the intermediate time steps of theinterval [t, t+ ∆t℄.Some papers whi
h dis
uss the time problem in distributed systems
on-sider a global
lo
k syn
hronising all the timers. Re
ent work [9℄ on Network17

www.manaraa.com

Gabriel Ciobanu and Cristian PrisacariuTime Syn
hronisation Proto
ol (NTP) shows that it is possible to a
hieve timesyn
hronisation in real appli
ations. Having this te
hnology we
an supposethat the theoreti
al assumption about a universal
lo
k is pra
ti
al ratherthan spe
ulation. Our global timing fun
tion φ∆ has to apply the lo
al time-stepping fun
tion φ for the lo
ations of the distributed system. If we adoptthe NTP syn
hronisation model, we
an get a guaranteed frequen
y and lo
alos
illator phase pre
ision of no more than a few millise
onds, whi
h in many
ases is a

eptable.3 Soundness of tDπRegarding the soundness of tDπ, we follow a method based on subje
t redu
-tion and type safety [4℄ used also in proving the soundness of Dπ. This isa synta
ti
 approa
h, in
ontrast to other approa
hes based on denotationalsemanti
s or stru
tural operational semanti
s.Theorem 3.1 (Subje
t redu
tion) For all tagged lo
ated pro
esses(a) If N ≡ N ′ then Γ
 N if and only if Γ
 N ′.(b) If N → N ′ then Γ
 N if and only if Γ
 N ′.Proof: Part (a) is in fa
t Theorem 2.10; its proof is in Se
tion 2.2.Part (b) is similar to the result presented in [11℄ whi
h asserts the
onsisten
ybetween the stati
 and the dynami
 semanti
s. We use the same te
hnique,and pro
eed by indu
tion on the depth of inferen
e for N → N ′. We also useLemma 2.7 whi
h relates time and type environments, and Lemma 2.8 whi
hrelates time and
ommuni
ation
hannels. More details
an be found in [12℄.Case inferred from (RΓ-IDLE). This is
overed by Lemma 2.8.Case inferred from (RΓ-RES). From the hypothesis we know that Γ
 (νa@k :
A)N . This means that Γ{a@k : A}
 N , and a

ording to the indu
tionhypothesis we have Γ
 N ′. Sin
e Γ{a@k : A} <: Γ, then by applying theweakening property of Proposition 2.6 we get Γ{a@k : A}
 N ′. Simplyapplying again (N-NEWCH) we get Γ
 (νa@k : A)N ′.Case inferred from (RΓ-COM1 or RΓ-COM2). These two related rules
anbe treated in the same way. Let us
onsider the �rst one. Starting from
Γ
 l[[a∆t!〈v〉.(P,Q)]]∆ | l[[a∆t′?(X : T).(P ′, Q′)]]∆′ and applying (N-STR)we get Γ
 l[[a∆t!〈v〉.(P,Q)]]∆ (*) and Γ
 l[[a∆t′?(X : T).(P ′, Q′)]]∆′ (**).By (N-RUN) and (*) we have ∆ ⊢l a

∆t!〈v〉.(P,Q) and with (**) we have
∆′ ⊢l a

∆t′?(X : T).(P ′, Q′). By applying (T-W) we get ∆ ⊢l P whi
h togetherwith (N-RUN) give the statement Γ
 l[[P]]∆. We also have ∆ ⊢l v : T and thesubtyping rea
tions Γ <: ∆, Γ <: ∆′ whi
h means that ∆(l, u) and ∆′(l, u)must agree on the type they use. So by weakening we get ∆′{v@l : T} ⊢l v : T .Now it is the moment to
onsider the di�eren
e between (RΓ-COM1) and
(RΓ-COM2), di�eren
e given by the typing rule used for the type of the in-18

www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariuput
hannel. By applying (T-R) we get ∆′{X@l : T} ⊢l P
′. We denoteby ∆′′ the type environment ∆′{v@l : T}. Thus, by weakening we get

∆′′{X@l : T} ⊢l P
′, and we
an use the substitution lemma of [6℄ to ob-tain ∆′′ ⊢l P

′{v/X}. However Γ <: ∆′′ and so, by applying (N-RUN), we get
Γ
 l[[P ′{v/X}]]∆′{v@l:T}. We apply Lemma 2.7 two times, and also (N-STR)to get the result Γ
 ψ(l[[P]]Γ) | ψ(l[[P ′{v/X}]]∆′{v@l:T}).It is easy to prove the se
ond inferen
e for (RΓ-COM2), but we have to payattention to the rules we use, be
ause the type of the
hannel is now di�erent.Case inferred from (RΓ-PAR). We have Γ
 N |M whi
h by applying (N-

STR) gives us Γ
 N and Γ
 M . We
an also infer by indu
tion that Γ ⊢ N ′.By Lemma 2.8 we have that Γ
 φ(M), and we
an apply again (N-STR)obtaining the result Γ
 N ′ | φ(M). For the
ase when M redu
es to M ′ byother rule than (RΓ-IDLE) (i.e., it is not a�e
ted by the passage of time), theproof steps are easy to �nd (and left to the reader).Thus we have
on
luded the subje
t redu
tion proof for the typing systemwith temporary resour
es. 2Subje
t redu
tion assures us that on
e well-typed, a pro
ess remains well-typed during its evolution. Note that well-typedness must be preserved byboth equivalen
e rules and redu
tion rules. In the following we give a resultof type safety whi
h is ne
essary to have a
omplete proof of the soundnessproperty of tDπ. The type safety property states that if a system is well-typed,then it
annot generate runtime errors, and this is denoted by P err

67−→.Theorem 3.2 (Type safety)We have N err

67−→ for all tagged lo
ated pro
esses N , and all type environments
Γ su
h that Γ
 N .Proof: The outline of the proof follows a method whi
h proves the
ontra-positive, namely if N gives rise to a runtime error (N err

7−→) then N
annot bewell-typed under any type environment Γ (Γ 6
 N for all Γ). In [4℄ the authorsuse the same statement as a lemma to prove that the faulty expressions areuntypable. We use indu
tion on the de�nition of the runtime errors, and havea proof
ase for ea
h rule of Table 9.Case inferred from (E-SND). The rule says that l[[a∆t!〈v〉.(P,Q)]]Γ
err
7−→ if

Γ(l, a) is de�ned and Γ(l, v) 6<: wobj(Γ(l, a)). Let us
onsider that there is atype environment ∆ su
h that the pro
ess generating a runtime error is well-typed under this environment, i.e., ∆
 l[[a∆t!〈v〉.(P,Q)]]Γ. This means that
∆ <: Γ and Γ ⊢l a

∆t!〈v〉.(P,Q). Therefore there are two typing rules whi
h
an be applied, depending on the type of the output
hannel. If a : − 6∈ Γ(l),then we have a
ontradi
tion with the fa
t that Γ(l, a) must be de�ned from thede�nition of the rule. Otherwise we have to use rule (T-W), obtaining Γ ⊢l a :
res{w〈T 〉}∆t and Γ ⊢l v : T . Statement Γ ⊢l v : T implies that Γ(l, v) <: T .From Γ ⊢l a : res{w〈T 〉}∆t we get Γ(l, a) = res{w〈T 〉} (by de�nition), whi
h19

www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariuby appli
ation of the fun
tion wobj leads to wobj(Γ(l, a)) = T . Together with
Γ(l, v) <: T , this leads us to the
ontradi
tion Γ(l, v) <: wobj(Γ(l, a)).Case inferred from (E-GO). We have l[[gok.(P,Q)]]Γ

err
7−→ if Γ(k) is de�nedand Γ(k) 6<: loc{go}. We
onsider that there exists a type environment ∆ su
hthat ∆
 l[[gok.(P,Q)]]Γ, and try to see if we
an
on
lude a
ontradi
tion.If the lo
ation k is not de�ned in the type environment Γ, then we
an use

(T-GO1); however this would result in a
ontradi
tion. By using (T-GO2),we have Γ(k) : loc{go} whi
h means that Γ(k) <: loc{go}; we get again a
ontradi
tion. Therefore we have the following statement: there is no typeenvironment ∆ su
h that ∆
 l[[gok.(P,Q)]]Γ and l[[gok.(P,Q)]]Γ
err
7−→.Case inferred from (E-RCV). We
onsider that there exists a type environ-ment ∆ su
h that ∆
 l[[a∆t?(X : T).(P,Q)]]Γ. From this we have that ∆ <: Γand Γ ⊢l a

∆t?(X : T).(P,Q). If we
onsider our input
hannel to be readingonly, then we apply the rule (T-RO) and we get Γ ⊢l a : res{ro〈T 〉}∆t. Weimmediately have Γ(l, a) = res{ro〈T 〉}, and by applying the fun
tion roobjwe get roobj(Γ(l, a)) = T , and thus roobj(Γ(l, a)) <: T ,
ontradi
ting thede�nition.Case inferred from (E-COMM). We use the same method as before, and
on-sider that there is a type environment ∆′ su
h that ∆′

 l[[a∆t!〈v〉.(P,Q)]]Γ |

l[[a∆t′?(X : T).(P ′, Q′)]]∆. By applying the rule (N-STR), and then (N-RUN),we get ∆′ <: Γ, ∆′ <: ∆, and Γ ⊢l a
∆t!〈v〉.(P,Q), ∆ ⊢l a

∆t′?(X : T).(P ′, Q′).Using the rule (T-W), we get Γ ⊢l a : res{w〈T 〉} whi
h means that Γ(l, a) =
res{w〈T 〉}. We apply the fun
tion wobj and get wobj(Γ(l, a)) = T (1). Wesuppose that the
hannel a under type environment ∆ is an r〈 〉
hannel, andinfer from ∆ ⊢l a

∆t′?(X : T).(P ′, Q′) that ∆ ⊢l a : res{r〈T 〉}. As before, we
an apply the fun
tion robj and get robj(∆(l, a)) = T (2). From (1) and (2)we have the
ontradi
tion wobj(Γ(l, a)) <: robj(∆(l, a)).Case inferred from (E-SUBC), (E-NEW), (E-PAR) and (E-STR). These rulesare the same as in Dπ, and the proofs are natural. 24 Con
lusionTimed systems represent an a
tive �eld, and there are many papers devotedto this topi
. In the following we
ompare our approa
h with a re
ent paper[7℄ having some
ommon features. The authors introdu
e webπ, a
al
ulusfor distributed systems with lo
ations, and treat failures and time. They alsouse a time-stepping fun
tion to de
rease the time stamps. Ea
h lo
ation hasa private
lo
k, but the
lo
ks are not syn
hronised by a universal
lo
k. In
webπ the time stamp is atta
hed to a transa
tion expression as a timeout foran entire pro
ess (a series of a
tions). In our
al
ulus, ea
h
hannel has aprivate timer whi
h measures the timeout for a
ommuni
ation, and not for a20

www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariuseries of
ommuni
ations. An important di�eren
e between our
al
ulus and
webπ is the possibility of tDπ to express resour
e a

ess
onstraints by usinga typing system.Another timed extension of the π-
al
ulus whi
h shares
ommon featureswith our
al
ulus is presented in [8℄. The main
ontribution of πRT -
al
ulus isthe introdu
tion of a timeout operator. The behaviour of the timeout operatoris the same as the behaviour of a timed
hannel in our
al
ulus. The authorsalso adopt a dis
rete time domain and syn
hronisation with a global
lo
k.Our
al
ulus respe
ts three of the time properties treated in πRT : time de-terminism, time
ontinuity and maximal progress. The other time propertiestreated by the authors are spe
i�
 to the design
hoi
es adopted in πRT .The a
tions in our approa
h are atomi
 as in the both models above.The
ommuni
ation of a name, and the moving with the go operator aresupposed to take no time. Instantaneous a
tions are also found in [2℄, where anextension of the π-
al
ulus with time is studied. An extension with lo
ationsto this timed π-
al
ulus (πt) is introdu
ed. However types are not taken into
onsideration.Our
al
ulus adds timers on output
hannels, and timers on
hannel types;these features appear to be new. The
ombination between the quantitative
onstraints imposed by timers and the resour
e a

ess
onstraints imposed bythe typing system provides modelling power to the new formalism tDπ. Weare interested in modelling mole
ular networks and biologi
al system [3℄. Inmole
ular networks there are stri
t rules whi
h determine the next rea
tiona mole
ule
an take part in. These are based on rea
tion times, quantitative
oe�
ients, putative times and other external stimuli. Time represents animportant quantitative measure in mole
ular networks, able to impose strong
onstraints on the intera
tions between mole
ules or
omplexes.Referen
es[1℄ Bengtsson, J. and W. Yi, Timed automata: Semanti
s, algorithms and tools, in:J. Desel, W. Reisig and G. Rozenberg, editors, Le
tures on Con
urren
y andPetri Nets, Le
ture Notes in Computer S
ien
e 3098 (2004), pp. 87�124.[2℄ Berger, M., �Towards Abstra
tions for Distributed Systems�, Ph.D. Thesis,Imperial College, Department of Computing (2002).[3℄ Ciobanu, G. and G. Rozenberg, editors, �Modelling in Mole
ular Biology�,Natural Computing Series, Springer, (2004).[4℄ Felleisen, M. and A.Wright, A synta
ti
 approa
h to type soundness, Informationand Computation 115 (1994), pp. 38�94.[5℄ Hennessy, M. and T. Regan, A pro
ess algebra for timed systems, Informationand Computation 117 (1995), pp. 221�239.[6℄ Hennessy, M. and J. Riely, Resour
e A

ess Control in Systems of Mobile Agents,Information and Computation 173(1) (2002), pp. 82�120.21

www.manaraa.com

Gabriel Ciobanu and Cristian Prisacariu[7℄ Laneve, C. and G. Zavattaro, Foundations of web transa
tions., in: V. Sassone,editor, Foundations of Software S
ien
e and Computational Stru
tures, Le
tureNotes in Computer S
ien
e 3441 (2005), pp. 282�298.[8℄ Lee, J. and J. Zi
, On modeling real-time mobile pro
esses, in: Pro
eedings 25thAustralasian Conferen
e on Computer S
ien
e (2002), pp. 139�147.[9℄ Mills, D., A brief history of NTP time: memoirs of an internet timekeeper,Computer Communi
ation Review 33 (2003), pp. 9�21.[10℄ Milner, R., J. Parrow and D. Walker, A
al
ulus of mobile pro
esses (i-ii),Information and Computation 100 (1992), pp. 1�77.[11℄ Milner, R. and M. Tofte, Co-indu
tion in relational semanti
s, Theoreti
alComputer S
ien
e 87 (1991), pp. 209�220.[12℄ Prisa
ariu, C. and G. Ciobanu, Timed distributed π-
al
ulus, Te
hni
al ReportFML-05-01, Formal Methods Laboratory, Institute of Computer S
ien
e,Romanian A
ademy (2005).

22

	Introduction
	Syntax and Semantics of tD
	 tD Syntax
	Typing System
	Operational Semantics

	Soundness of tD
	Conclusion
	References

