Timers for Distributed Systems!

Gabriel Ciobanu and Cristian Prisacariu 2

Institute of Computer Science, Romanian Academy
Blvd. Carol 8, 700505 lasi, Romania

Abstract

We deal with temporal aspects of distributed systems, introducing and studying
a new model called timed distributed mw-calculus. This model extends distributed
m-calculus with timers, transforming the communication channels into temporary
resources. Distributed m-calculus describes located interactions between processes
with restricted access to resources. We introduce time constraints by considering
timeout timers for channels. Combining these timers with types and locations,
we provide a formal framework able to describe complex systems with constraints
on time and on resource access. Its typing system and operational semantics are
presented. It is proved that the passage of time does not interfere with the typing
system. The new model is proved to be sound by using a method based on subject
reduction.

Key words: timers, typing system, locations, subject reduction

1 Introduction

In this paper we use timers and study their role in modelling complex systems
of distributed and mobile processes. We select the m-calculus [10] as a ground
platform; this formalism is well suited for modelling systems based on com-
municating processes. In order to emphasise the spatial aspects in distributed
systems we use an explicit notion of location. The interaction between pro-
cesses can be controlled by using various sorts. The sorts allow to restrict the
use of distributed resources, namely located communication channels.

A combination of locations and sorts for the m-calculus is already presented
in |6]; the resulting calculus is called distributed m (D). In Dm the authors
use the word “types” (instead of “sorts”) to express certain capabilities for the
interaction channels. Sorting is used in the 7-calculus to define patterns of
interactions; the sort of an interaction channel defines the type of the messages

! Research partially supported by CEEX Project 47/2005
2 Email: gabriel@iit.tuiasi.ro and cprisacariu@iit.tuiasi.ro

(©2006 Published by Elsevier Science B. V.

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

sent or received along that channel. By “interaction between processes” we
understand a “communication between processes”. A communication channel
is considered to be a fixed resource at a certain location. The communication
is local and code migration is used to move processes to the same location,
in order to communicate along a common local channel for which they have
proper capabilities. The typing system offers the possibility to restrict the
access to resources by tagging the processes with a type environment, and to
restrict the messages that could be transmitted along the channels.

We take up D, extending it with decreasing timers attached to commu-
nication channels and to channel types. The new formalism is called timed
distributed m-calculus (tD), and it is presented as a rigorous framework for
describing distributed systems with time and resource constraints. The timers
on channels define timeouts for communications, and timers on the channel
types restrict the channels availability. Whenever the timer of either a channel
or a channel type expires, the corresponding channel is discarded, and respec-
tively the channel type is lost. £D7m combines the temporal constraints with
types and locations in order to give the possibility of modelling located and
timed interactions between distributed processes with time restricted resource
access. Following the method introduced in 4|, we prove that the typing sys-
tem of tDw is sound with respect to the equivalence and reduction relations
of the m-calculus. Moreover, time does not interfere with the typing system.

2 Syntax and Semantics of tDn

By adding timers to communication channels, communication along a channel
is no longer available for an indefinite time (like in D7). If no interaction
happens in the predefined interval of time determined by the timer value, the
process goes to another state. Each channel has two alternatives: one when
the communication is achieved, and another when we have no communication.
The channel timers are created once with the channel, but started only when
the channel becomes active (available for communication).

2.1 tDm Syntax

The syntax of a D7 channel a is extended by tagging it with a timer At; this
means that the channel ¢! is waiting for communication only for the period
of time determined by the timer value ¢ (namely ¢ units of time, as we use a
discrete time domain).

The syntax of Input and Qutput communication uses a pair of processes
(P,Q). For instance, the Input expression a®'?(X : T).(P,Q) evolves to P
whenever a communication is established during the interval of time given
by At, otherwise it evolves to . In this expression, the variable X of type
T is considered bounded only in P. We consider timers for both input and
output channels. The rational behind the choice of adding timers to outputs

2

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

comes from the fact that in distributed systems we have both multiple clients
and multiple servers. This means that output processes (clients) can switch
from one server to another depending on the waiting time. In general, an
input process awaits for a resource for a certain period of time, and an output
process offers a resource for a certain period of time.

Table 1: Syntaz of tD=

U= Variable Name
P, Q ::— stop Termination
| a”t Timed Channel
 P|lQ Composition
e —x Variable Name
| (vu: A)P Channel Restriction
|k Location Name
| goe.P Movement
v = bv Base Value
| urt). (P, Q) Output
Lu | e Name
| wAt?(X:T).(P,Q) Input
| u@e Located Name
| *P Replication
| (v1,..,up) Tuple of Values
M, N:— M|N Composition
Xo—x Variable
| (vu@e:T)N Located Restriction
| XQk Located Variable
| e[[P]]r Located Process

| (X1,..,X,,) Tuple of Variables

The above table defines in order the names, values, variables, processes
and tagged located processes of tDm. For a variable X of the Input expression
a®?(X : T).(P,Q) we should also provide its type T, and for the channel
name a in the Channel Restriction expression we have to provide its channel
type A (the types are presented in Section 2.2).

Note that with the located restriction (va@Fk : T)N we specify a new
private channel a and its location k. For example, in the process

(v a@k = T)(I[[P]] | K[[Q]]) | K[[Q]]

the channel a is private to P and () and is located at the current location £ of
Q. Moreover,)" does not have any knowledge about channel a even though
it runs also at location k. This means that process P must move to location
k before communicating on the private channel a. Also note that the syntax
for channel restriction specifies only the name of the private channel, and not
the associated timer; this is because a restriction refers only to the names of
the channels.

The interaction between processes is given through the input and output
process expressions which must have the same channel name; the channel
timers are playing a secondary role in such an interaction.

Example 2.1 The following two processes running in parallel can interact
along the common channel a.

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

a®*v).(P,Q) | a®?(X : T).(P', Q") — P | P'{"/x}

Intuitively, the process on the left evolves to the process on the right after
such an interaction. The output process (the process on the left of the parallel
composition operator) sends the value v on the channel named a and then
behaves as P. When receiving the value v, in the input process (the process
on the right of the parallel composition operator) all the occurrences of the
bound variable X are replaced by v in P’.

Waiting indefinitely on a channel a is allowed by considering At as oo.
An output process expression a*!(v).(P, Q) awaits forever to send the value
v, simulating the behaviour of an output process in untimed synchronous 7-
calculus.

2.2 Typing System

Each located process is tagged with a type environment I' which is a set of
location types denoted by K in Table 2. Formally the type environment is
a mapping from location names k to location types K. A location type K
may contain location capabilities denoted by x; these capabilities may express
either capabilities of using channel names a with their corresponding chan-
nel types A (&:[1), or move capabilities go, or channel restriction capabilities
(i.e., permissions to create private channels) newch. A channel type A may
contain the following channel capabilities generically denoted by «: capability
r(T) of reading messages of type T, capability w(T") of writing messages of
type T, and capability ro(T") of reading only messages of type T. A type
T may contain tuples (71, ...,T,) of types corresponding to tuples of names,
and channel types Ay,..., A,QK corresponding to channel names aq,...,a,
located at a location of type K. B represents the set of base types.

We may have only one instance of the capabilities go and newch in a
location type K; they represent respectively the capability of a process to
move to that location, and the capability to create private channel names at
that location.

In order to exemplify, let us consider a process which has in its type en-
vironment [a channel name a with a channel type res{r(T), w(T"),ro(T")}.
This means that along this channel a the process can receive messages of type
T, and send messages of type T”. The ro capability is similar to an r capabil-
ity, with the difference that the types of the received messages are not added
to the type environment of the process. Types are accumulated when a name
is received along an input channel with capability r().

Having ro() capabilities, we can describe processes which may use the data
received in a message through an input channel with capability ro() only if
there exists a proper type for the new data within their type environments.
More precisely, let us consider a process P at location k& which receives a lo-
cated channel name 0@k on the input channel a of type res{ro(T)}. The
located process k[[P]|r can use the new channel name b to communicate with-

4

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

Table 2: Type system and subtyping relation

Types: Subtyping:
K = loc{k} K <! K
A o res{a}At a:A<:a:BiftA< B
E: A|K|B K <L iftVael: 3ne K: k< A
T:=A|B|(T,...,T,) A<:B ifVfeB: dacA a<f
| Ay,..., A,QK AQK <: BQL if K<:L and A<:B
Capabilities: S < T ifVi:S;, < T,
Kiu=a:A r(T) <:r(T" it T < T
| go | newch w(S) <: w(S)if " <: 8
a = r(T) | w(T) | ro(T) ro(Ty <: ro(T")Wf T <: T’

out generating errors only if its type environment I" contains at location k the
corresponding type of b, i.e., I'(k,b) should be defined. Runtime errors are
presented at the end of Section 2.3, where Table 9 contains the rules of the
error system.

In D7 the resources are accumulated, but they can never be discarded.
We extend the channel types of Dm with timers of form A¢. These timers
define the existence of the channel types inside the type environment. The
timers decrease with each "tick" of the universal clock (we assume that we
have an universal clock). Communication actions can be performed along a
channel until the timer on its type has expired. After expiration, the channel
capabilities are discarded and any communication would generate a runtime
error. Timers are created once with the channel types, and they are activated
when capabilities are added to the type environment.

In our approach a process can move to a certain location, and wait for
a period of time to establish a communication on a particular channel (a
fixed local resource) with a complementary process. It is necessary to offer
capabilities as r(T"), w(T), and ro(T) for these fixed resources in order to
restrict the actions performed by a process. The capabilities for the locations,
and the capabilities for the channels from the type environment impose to a
process what actions are allowed to be executed at each location. An example
of a type environment is:

I'={l:locfa:Ab: B} k:loc{a:A'}}
where we denote by I'(k) the type loc{a : A’} of location k, and by T'(, b) the
channel type B of the channel b located at [. The process of accumulating

capabilities is made explicit by using enwvironment extensions. We denote
by I'{k : K} an environment I' extended with a new location k of type K.

5

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

Moreover, considering I' as above, we can extend the type environment with
a new channel ¢ located at k by

I'{c@Qk: B'} ={l:loc{a: A,b: B}, k :loc{a: A',c: B'}}

When a process receives new channel names together with their associated
types, capabilities for the new names become available (are added to the type
environment of the process). As an example, let us suppose a process receiving
a name of a located channel c@Qk with channel type B’ through an input
channel with reading capability. The type of the new channel is added to the
type environment at the corresponding location type of k : loc{...}. It means
that now the process knows about the new channel, and gains the capability
to communicate through the accumulated channel ¢ according to type B’

A subtyping relation (<:) is introduced to compare type environments. If
we consider two type environments I' = {I : loc{a : A,b: B}} and IV = {I :
loc{a : A}}, then we have I' <: " according to the definition in the second
column of Table 2. Comparing type environments I" and IV, we see that an
environment with more capabilities (I') is a subtype of an environment with
less capabilities (I"). The reason for such an interpretation of the subtyping
relation is that I is more restrictive than I'. The subtyping relation represents
the inverse of the subset relation from the set theory; if we consider the type
environments as sets of location types, the relation above becomes I" D I"”.

We extend both the partial meet I and partial join L operators of D
with the new channel capability ro(). Intuitively the partial meet operator
behaves as the union operator of the set theory, and the partial join operator
behaves as the intersection operator. We denote by a : — ¢ K the fact that
in the location type K there is no channel type A for channel a such that
a: A€ K. We denote by v any of the location capabilities go or newch.

Table 3: Partial meet operator for locations:

KnK — {y | ye Korye K'}
Uf{a:A |a:AeKanda:—¢K'}
U{a:A |a:—¢Kanda:A €K'}
Ufa:A" |a:Ae Kanda: A € K' and A" = AN A’}

The partial meet operator for location types K M K’ is undefined if and
only if there exists a channel name a such that a : A € K, a : A’ € K’ and
A A’ is undefined (see Table 4 for the definition of M for channel types).

The method of removing capabilities is formalised by a binary subtraction
operator \ A defined by using a join operator LI (see Table 5), and a symmetrical
difference operator denoted by \ similar to the one defined in set theory (in
our case it is applied to type environments). We write \ o for the operation
of removing from the first type environment all the types contained in the
second type environment. We denote by £ the set of type environments. The
subtraction operator \a described above is defined as \a : € x &€ — & where

6

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

C\AT"=T U (I \I"). If we consider two type environments
I'=A{loc{a: A,b: B}} and T'={loc{b: B,c:C}},

each composed of one location type with two channel types, then by applying
the subtraction operator \A we obtain

F\aT"=loc{a: A;b: B} U (loc{a: A,b: B} \loc{b: B,c: C}) =loc{a: A}

Table 4: Partial meet operator for channel types:

Partial meet operator for channel types (AT A’) is undefined iff:
r(T) € A and r(T) € A’ and T M7’ undefined

ro(T) € A and ro(T) € A’ and T M7’ undefined
w(S) € A and w(S) € A" and SU S’ undefined
r{T) € A and w(S") € A/ and S £ T
w(S) € A and r(T") € A and S &£ T
ro(T) € A and w(S') € A’ and S £ T
w(S) € A and ro(T’) € A’ and S &£: T

ro(T) € A and r(T") € A’ and T’ \a T undefined
r(T) € A and ro(T’) € A’ and T \a T’ undefined
The definition
AMA — {ro(T) | ro(T) € Aand ro(—) ¢ A’}
U {ro(T") | ro(T) € Aand ro(T') € A and T" =T NT'}
U {w(S) | w(S) e Aand w(—) ¢ A’}
U {w(S”) | w(S) € A and w(S") € A" and §" = SUS'}
U {ro(T") | r(T) € Aand ro(T’) € A" }
U{r(T) | r(T)e Aandro(—)¢g A andr(—) & A or
r(T) € A and ro(T") € A’, r(—) ¢ A" and
TUT =0 or undefined}
U {r(T") | r(T)e Aand ro(—) ¢ A’ and r(T") € A" and T =TT or
r(T) € A and ro(S) € A" and r(T") € A’ and
T"=TMNT and T U S = 0 or undefined }
U {r(T") | r(T)e Aand ro(T") € A" and r(—) ¢ A" and T"=T \a T’ or
r(T) € A and ro(T") € A" and r(S) € A’ and
T" =T\A T and TUS = or undefined }

o~ o~

)
)

plus all other natural cases resulted from swapping A with A’

7

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

A process which has a channel type with a capability ro(T) can receive
only messages of type T (or any subtype of T') without generating errors.
When the type of the channel is extended with the capability ro(T”), then the
process is able to receive messages of a less restrictive type 7" =T 11T'. We
solve the possible conflict between r() and ro() by providing a higher priority
to ro() capability (because it is more restrictive than r()). In consequence,
ro() keeps its types and r() loses them in favour of ro() whenever r(T") and
ro(T") overlap (i.e., TUT" # (). When extending the writing capability w(S)
with a new capability w(S’), the channel becomes more restricted, having the
capability w(S”) where S”"=S 1 5".

We denote by r(—) ¢ A the fact that there is no type 7" such that r(T') € A.
The notations w(—) ¢ A and ro(—) € A are defined similar.

Table 5: The Join operator

KUK — {y | v€ K and v € K'}
U{a:A” |a:AeKanda: A € K'and A" = AU A’}
AUA = {(r(T") | r{T)eAand r(T")e A and T" =T UT'}
U {ro{T") | ro(T) € Aand ro(T")y € A and T =T UT'}
U {w(S") | w(S) € Aand w(S") € A" and §”" =SS’}

Proposition 2.2
i. (€,) is a commutative monoid;
ii. (€, \) is a commutative group;
ii. U is distributive over \, and (£,\,U) is a ring.
Proof: It is easy to observe that L and \ are commutative, and the empty
environment is the identity element. The distributivity of U over \ can be

simply verified by translating the set operators into boolean operators, and
using the truth tables. O

We define a cleanup function ¢ which changes the type environments ac-
cording to the passage of time. It decreases the timers of the channel types,
and removes the types with an expired timer. It also removes location types
with only go capability.

Definition 2.3 (Cleanup function)
W . LPr — LPr is defined over the set of tagged located processes LPr by:

Y([P]r) = U[P]]r

where [can be any location of a distributed system, I is obtained from T’
such that every channel type res{a}At with ¢ > 1 and ¢ # oo is changed to
res{a}A(t — 1), and every res{a}Al is removed. Moreover, location types
loc{go} are removed.

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

By removing channel types from I', we get I'” where it is possible to have
location types having only go capabilities. We consider these location types
as empty because the only allowed action is a movement. Even if we have
k :loc{go} in I", and a sequence of movements for a process gok.gol.P, this
process can be reduced to gol.P because we can avoid the intermediary code
migration to location k£ without losing any useful effect. Therefore ¢ removes
k : loc{go} from I”. A process moving to a location [having the type loc{go}
has no other capability, thus when performing any action (communication or
channel creation) it gives rise to runtime errors.

For simulating the passage of time we use a time-stepping function ¢ de-
fined over the set P, of processes running at an arbitrary location [. The
possible communications are performed at each tick of the universal clock; ac-
tive channels are those which could be involved in these communications. The
time-stepping function affects the active channels which do not communicate
at that tick; the timers of the affected channels are decreased by one unit of
time. The channels involved in communication disappear together with their
timers. In the definition of the time-stepping function ¢, we omit the channel
type and the transmitted message in the input and output processes in order
to simplify the presentation.

Definition 2.4 (Time-stepping function ¢ : P; — P))

(D (R, Q) if P=0a?.(R,Q), t>1and t+# oo
Q if P=a?.(R,Q),t<1

¢(P) =1 ¢(R)|4(Q) if P=R[Q

(va:A)p(R) ifP=(va:AR

\ P otherwise

We also define a tagged time-stepping function ¢ taking care of the missing
types. ¢a is a global function defined by using the local function ¢.

Definition 2.5
Tagged time-stepping function ¢ : LPr — LPr is defined by using ¢:

;

U[p(P)]]r if P=a.(R,Q), t>1 and t# oo
orif P =a”.(R,Q),t<1
Q) if P=a”".(R,Q), t>1
oa(l[[Pllr) = and T ¢: (1, a)

oa(U[[R]]r) [oa(U[Q]Ir) if P=R|Q
(va@l : A)pa(l[[R]r{aqi:ay) if P = (va: AR
LU[o(P)]]r otherwise

where I" is obtained by applying the cleanup function 1.
9

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

Tagged time-stepping function ¢, is applied to tagged located processes
({[[P]]r); it also changes the type environment of the located process by ap-
plying the cleanup function .

The static semantics of tDm is defined as a set of inference rules which
describe the relationship between expressions and their corresponding types.
In this paper we consider the type environment as a mapping from free names
to types. A type environment is associated with each located process to restrict
the range of resources it may access. The typing rules describe the behaviour
of a process with respect to its types. A typing system is used to decide the
well-typedness of the processes. Syntactically we write I' = P, and say that
a process P is well-typed with respect to a type environment I'. We also write
I' k. P and say that P is well-typed to run at location k.

Table 6: The Typing System (Typing rules)

Processes
(T-R) (T-RO) (T-W)
ChHia:res{r(T)}At ChHia:res{ro(T)} At ChHa:res{w(T)}At
fo(X)n fo(T) =0 fo(X)Nn fo(@) =0 FHo:T
r{xali:T}+H P I'H P I'H P
'@ 'HQ 'HQ
I a®?2(X:T).(P,Q) THa?(X:T).(P,Q) Tk a*w).(P,Q)
(T-NEWCH)
I'(l) <: loc{newch} (T-STR) (T-GO)
a ¢ fn(l) ' P I'(k) <: loc{go}
r{a@l: AYH P THQ Tk, P
TH (va: AP Tk stop, P|Q*P Tk gok.P
(T-Rpew) (T-Wew)
a:—¢l(1) T'HQ a:—¢l() T'HQ
It a®?2(X :T).(P,Q) It a®(v).(P,Q)

Located Processes

(N-NEWCH)

(N-RUN) (N-SRT) I'(l) <: loc{newch}
AR P Tl M ad fn(l)
[<A TIFN I{a@l: A} - N

TIHIP]la TIO0, M|N TI(va@l: AN

10

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

In Table 6 we give the rules for the typing system of tDn. Considering
the rules (T-Ryey) and (T-W e,), We observe that the intuitive notion of well-
typedness from D is no longer valid in tDx. In our calculus we accept tagged
located processes with missing channel types (the types are removed with the
passage of time), and these processes do not generate errors.

In order to say that a®!!(v).(R, Q) is well-typed to run at location k with
respect to type environment I', the following statements should hold:

e ', v : T which means that v is a value of type T" at location k;

o I'H4 a:res{w(T)} At which means that channel a exists at location k, and
may send values of type T for ¢ units of time;

e '+ R; I' Fi @ which means that both R and @) are well-typed to run at
location k.

For a tagged located process k[[P]]a, the well-typedness relation is denoted
by IF and is defined by using the well-typedness relation Fj for a process P
running at location & (see rule (N-RUN) in Table 6).

If a process communicates on a channel for which it has no capability, it
can still be well-typed if the alternative process @) is well-typed. We call this
second process the safety process. This behaviour is reflected in one of the
cases in the definition of ¢a.

We can imagine the process action flow as a binary decision tree because
of the decision-like syntax of the channels. At each time step one of the
following alternatives must be chosen for an action: communication action,
timer expiration or move action (see Section 2.3 for the extension of the go
operator with a choice syntax). An alternate definition for well-typedness of
processes is: A process is well-typed if in the action flow tree there exists a
path from the root to a leaf which does not generate a runtime error.

Proposition 2.6 [6] (Weakening property)

(a) IfU'IF N and A <:T then AlF N. (for tagged located processes)
(b) If T P and A <: T then Ay P. (for processes)
(¢) IfT'Fra:Aand A <:T then Aty a: A. (for channels)

The weakening property extends the well-typedness property of the pro-
cesses from a given type environment I' to a less restrictive environment A
(which has more capabilities). The second statement can be read as: if P is
well-typed to run at location k£ with respect to a type environment I" and A
is a subtype of I'; then P is also well-typed to run at location k with respect
to the type environment A.

Since the cleanup function v changes the type environment A by removing
channel and location types, we are interested in whether the process is still
well-typed under the new type environment A’

Lemma 2.7 (Well-typedness is preserved by the cleanup function)
If T Ik I[[P]]a, then T IF ¥([[P]]la). In other words, if T I+ [[[P]]a, then

11

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

U Ik [[[P]]ar where A’ is obtained by removing channel and location types
from the type environment /.

Proof: The proof proceeds by induction on the structure of P, having a
case for each process expression. We give here only the most interesting and
significant cases. For a complete proof see the online technical report [12].

Case inferred from (Composition: R | Q). By the equivalence rule (Sp-SPLIT)
we have T' IF {[[R]]a | {[[@Q]]a which, by rule (N-STR) for located processes,
is transformed into I' IF [[[R]]a and ' IF [[[Q]]a. Applying the induction
hypothesis, we obtain I" - ¢ ({[[R]]a) and [IF ¢ (I[[Q]] a) which, by applying 1,
become I" IF [[[R]]a and T I I[[Q]]ar. For both processes we have the same A’
because the application of ¢ to the tagged located processes takes into account
only the type environment, and in our case the type environment is the same
A. By applying the relation (Sp-SPLIT) we get the result I' IF [[[R | Q]]a
which means I' IF Y (I[[R | Q]]a).

Case inferred from (Restriction: (va:A)Q). From (N-RUN) we have A
(va: A)Q and T" <: A. By (T-NEWCH) we infer A{a@l : A} F; @ and we also
have I'{a@l : A} <: A{a@[: A}. By applying the weakening property 2.6
we infer that I'{a@l : A} I I[[Q]]a{aai:a}. Applying the induction hypothesis,
we get I'{a@l : A} I+ Y(l[[Q]]a{aar:a}) Which is equivalent to I'{a@[: A} IF
l[[Q]]ar{aai:a} because the application of the function 1) does not affect the
new name a. We apply again the (T-NEWCH) rule obtaining I I+ (va :
A)[[Q]]araai:a} which is structurally equivalent to I' I [[[(va : A)Q]]ar

Case inferred from (Movement: gok.Q)). In the same way of reasoning as
before we have A ; go k.QQ and ' <: A. By (T-GO) we get A ;. @ and
A(k) <: loc{go}. Using (N-RUN) we have I' IF k[[@Q]]a which by induction
implies I' IF k[[Q]]a. We now infer that A’ F; @ and I' <: A" are true. By
application of the ¢ function, the capability of the process to move to location
k cannot be lost. This means that A’(k) <: loc{go} holds and, together with
what we obtained above and by using the rule (T-GO), we have A’ F; gok.Q
and again I' IF [[[gok.Q]]a,. This is another syntactic form of what we were
looking for, namely I' IF ¢ (I[[Q]]a)-

The proof proceeds in the same manner if instead of (T-GO) we use the new
rules (T-GO1) and (T-GO2) defined in Section 2.3.

Case inferred from (Input: a®'?(X : T).(R,Q)). If we consider that channel a
has the type 7o(), then from A ; a®'?(X : T).(R, Q) and by using (T-RO) we
have the following statements: A F; a: res{ro(T)}, fo(X)N fo(A) =0, AF,
R and A ; Q. Applying the induction hypothesis, the last two statements are
transformed into I" IF [[[R]]ao and T IF {[[@Q]]a which provide the following two
true statements: I' IF ¢ (I[[R]]a) and T" IF ¢({[[@Q]]a). This means that three
(fo(X)N fo(A) =0, A H R and A’ F; Q) of the four statements needed
by (T-RO) are true. If the cleanup function does not remove the type of the
input channel from the capability set, then it is valid in the new environment

12

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

A’. Thus we can apply (T-RO), and obtain ' IF [[[a®'?(X : T').(R, Q)]]as- On
the other hand, if the type of the active channel is missing, we can use the
rule (T-Rye,) and obtain the same result as before which is equivalent to the

desired result, namely T' F o ({[[a®?(X : T).(R,Q)]]a).

The cases for Output, Replication and Termination are natural, and they
follow the proof steps of the cases presented above. O

The following lemma shows that the passage of time does not interfere
with the typing system. The lemma states that if a tagged located process is
well-typed with respect to a type environment I', then the application of the
tagged time-stepping function ¢ preserves its well-typedness property.

Lemma 2.8 (Tagged time passage)
[T IFU[Plla, then T IF 6a([[P]]a).

Proof: We use induction on the inference depth of I' I [[[P]]a. From the
hypothesis we derive that A F; P by (N-RUN), and I' <: A. We get I' -, P
by using the weakening property. The proof continues by considering a case
for each line in the definition of ¢a.

Case inferred from (P = R| Q). Using (T-STR) we have A, R and A+, Q
which is equivalent to A F [[[R]]; by Lemma 2.6 we get I" I- [[[R]]a. The same
result is obtained for process (). By applying the induction hypothesis, we get
LIF ¢a(l[[R]]a) and ' IF ¢a(l[[Q]]a)- These lead to the desired result, by the
application of ¢a to R|Q, i.e. I'IF ¢a(l[[P]]a)-

Case inferred from (P = a®'.(R,Q), t < 1). We have two subcases, one when
a is an input channel, and another when a is an output channel. The result
of the application of ¢a to P is l[[Q]]as (with A" obtained by applying the
cleanup function 1) because ¢ < 1. Let us consider that a is an output channel,
and thus A F; ¢®!(v).(R,Q) and T <: A. Using (T-W), we get A I, Q, and
by Lemma 2.7 we get A’ F; Q. Since I' <: A <: A’ we infer T' I [[[Q]]ar.
A similar proof is obtained when we consider an input channel, by using the
rules corresponding to the type of the input channel.

Case inferred from (P = a®'.(R,Q), t>1 and T' #: I'({,a)). This case is
similar to the previous one, but instead of using the normal typing rules we
use (T-Ryey) and (T-W,,.,) just because the capabilities of a are not included
in the type environment.

Case inferred from (P = a®'.(R,Q), t>1 and t# o0o). For this case we
consider the input expression, namely A F; a®?(X : T).(R,Q). In this case
¢a decreases the channel timer from a®! to a®*~'. From the point of view of
the typing system, the processes a®'?(X : T).(R, Q) and a®'1?(X : T).(R, Q)
are the same, and we can apply Lemma 2.7 and get A’ - a®?(X : T).(R, Q).
Since I' <: A <: A/, we get the conclusion I' IF [[[a®?(X : T).(R, Q)]]ar-

The case for the channel restriction is similar, and uses the typing rule

13

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

(T-NEWCH). O

Definition 2.9 We define a syntactic equivalence = over timed channels by
alAtl = aQAt2 if and only if a1 = ay and t; = 5.
If the timers of the same channel name have different values, the corre-
sponding processes have different behaviour. This aspect must be considered
when defining timed bisimulations [1].

We define the tagged structural equivalence relation.

Table 7: Tagged structural equivalence

(S-GARBAGE) l[[stop]|r = stop

(Sp-SPLIT) P | Qllr = U[P]r [[Q]]r

(Sr-COPY) H*Ple = [P | {{[*Pllr

(Sr-NEW) [(va: A)Pllp = (vaQl: A)[[P]|a if a & fn(I) U{l}
where A = T'{a@I : A}

(Sp-EXTR) M|(va@k : A)N = (vaQk : A)(M, |N) if a & fn(M)

(Sr-AssocC) [[P]lr U[[Q|R]]r = [[[P|Q]]r [{[[R]]r

(Sr-COMMU) P [HQlr = Qe [Pl

(Sr-NEUTR) U[P]lr | stop = I[[P]lr

The subject reduction property states that well-typedness is preserved by
reduction relation. This is a general approach in functional programming
frameworks [4,11]. We are also interested to prove that the well-typedness
property is preserved by structural equivalence relation. We present now such
a result related to the structural equivalence relation. A more general subject
reduction theorem is presented in Section 3.

If we have two tagged located processes which are structurally equivalent,
and one of them is well-typed with respect to a type environment I', then the
other process is also well-typed with respect to type environment I'.

Theorem 2.10 (Subject reduction for tagged equivalence relation)
For all tagged located processes N, N' such that N = N’,
I'lE N if and only if I' IF N'.

Proof: We must consider all the equivalences given in Table 7.

Case inferred from (Sp-NEW). From hypothesis we have T' IF [[[(va : A)P]]a,
which means that I' <: A and Ak, (va : A)P. By using (T-NEWCH) we get
A{a@l : A} F; P. By applying (N-RUN) we get A{a@l : A} F [[[P]], and
together with I'{a@l : A} <: A{aQI : A} we have I'{a@[: A} IF I[[P]]afaai:a}-
We apply again (T-NEWCH) for tagged processes and get the result, namely
' (Va,@l . A)l[[P]]A{a@l:A}-

14

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

Case inferred from (Sp-SPLIT). We start from I' <: A and A F;, P|@, and
by using (T-STR) we get A = P and A F; Q. From I' <: A and (N-RUN)
we get I' IF [[[P]]a and T' IF [[[Q]]a. We apply again (N-STR) and obtain the
conclusion I' IF [[[P]]a | l[[@Q]] a-

Case inferred from (Sp-COPY). This case follows the steps of the previous
one, and we leave it as an exercise to the reader.

Case inferred from (Sp-EXTR). For this case we use the rules for located
processes. Starting from M | (va@k : A)N and by using (N-STR), we get
L'k M and T IF (va@k : A)N. T Ik (va@k : A)N together with (N-NEWCH)
infer I'{a@k : A} I N. By weakening, and because a ¢ fn(L'), we get
I'{a@Fk : A} I M. We apply again (N-STR) and then (N-NEWCH), and we
get the desired result I' I (va@Fk : A)(M | N).

The cases inferred from (S;-GARBAGE) and other rules are similar to the
monoid laws of the m-calculus. O

2.8 Operational Semantics

We consider the tagged located processes ranged over by N and M, namely N
and M can be thought as process expressions of form [[[P]]r. We denote by
#» the fact that rules (Rp-COM1) and (Rp-COM2) cannot be applied. Using
these notations, we give the following reduction rules providing an operational
semantics for tD.

Table 8: Reduction relation of tDw

[P]]r #
(Rp-GO) (Rp-IDLE)
U[gok.Pllr — (k[[P]]r) [Pl — ¢a([[P]Ir)

I'(l,a) <:res{r(T)}
a®*o).(P,Qa | U[a®2(X - T).(P',Q")]]r —
SUPla) | P X HIrfoarry)
I'(l,a) <:res{ro(T)}
a®*w).(P,Qla | U[a®2(X - T).(P',Q")]]r —
YUPa) | LUP{Yx HIr)

(Rp-COM1)

(Rp-COM2)

N—-N M-—-M N — N’
(Rr-PAR) (Rr-RES)
N|M—-N | M (va@l : A)N — (va@l : A)N’
N=N N-M M=M
(Rp-CONG)
N — M’
15

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

We have two communication rules which depend on the type of the commu-
nication channel. In (Rp-COM2) we consider ro() channels, and the process
may use the received information without adding the new type to its type
environment I', contrary to the behaviour of rule (Rp-COM1). The communi-
cation rules and (Rp-GO) do not enter under the scope of ¢a. In this case the
type environments are affected by the cleanup function . In (Rp-IDLE) the
function ¢ decreases the timers on channels, and for the expired timers the
function discards the channels and changes the state of the process. At each
tick of the universal clock, the rule (Rp-IDLE) is applied to processes which do
not enter any communication. When applying the rule (Rp-PAR), if process
M does not have an internal communication reduction, then it is transformed
into M’ by rule (Rp-IDLE). The same argument is valid for NV as well.

Removing location types from the type environment can lead to errors
generated by go actions. We solve this problem by extending the syntax of
go with a choice syntax similar to the one given for channels; therefore go [. P
becomes go [.(P, Q). If I'(1) is not defined, then @ is executed. If the location
type of [contains a capability go, then P is executed; otherwise, if the location
type of [does not contain a capability go, an error is generated. We should
change the corresponding typing rules where the operator go appears. Thus
(T-GO) is translated into (T-GO1) and (T-GO?2).

k¢ dom() THQ (k) :loc{go} T kP
(T-GO1) (T-GO2)
I'H o gok.(P,Q) I'H gok.(P,Q)

. . err
A process P generating an error is denoted by P ——. The cases when a

process generates a runtime error are defined by a set of rules in Table 9.

robj(), roobj(), wobj() are partial functions defined over the set of channel
types, and returning the type of the corresponding channel capabilities. For
example, considering a channel type a : res{w(T’) } in the type environment I'
at location [, the application of wobj(I'(l,a)) returns 7. In order to derive a
runtime error, the channel type or location type must be in the type environ-
ment. A runtime error appears when a process tries to do something against
the types accumulated in its type environment. When a type is not in the
type environment of the process, the safety process is chosen by ¢a.

The reduction rule (Rp-GO) cannot check if the type of the location is in
the type environment, and consequently we change the time-stepping function
¢a by adding two more lines to its definition:

E[[R]lr it P=gok.(R,Q) and I'(k) <: loc{go}
Q) it P=gok.(R,Q) and k & dom(I')

The rule (Rp-GO) is changed into [[[gok.(P,Q)|]lr — ¢a(ll[gok.(P,Q)]]r)
which is captured by the (Rp-IDLE) rule. A process of the form gok.(P, Q) is
beyond the scope of any of the reduction rules Ry, excepting (Rp-IDLE), and
S0 ¢a is applied. This function applies one of its new lines, and changes the

16

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

Table 9: Runtime errors

['(k) is defined and T'(k) £: loc{go}

(F-GO) err
llgok-(P,Q)]lr —
(E-SUBC) I'() £: loc{newch}
[(va: A)P]r =5
(E-SND) I'(l,a) is defined and T'y(v) #: wobj(I'(l, a))
a1 {v).(P, QI ==
(E-RCV) ['(l,a) is defined and robj(T'(I,a)) £: T or roobj(L(l,a)) £: T

[a®?2(X - T).(P,Q)lIr —

I'(l,a) and A(l,a) are defined and
(E-COM) wobj(T'(l,a)) £: robj(A(l,a)) or wobj(T'(l,a)) £: roobj(A(l,a))
[[a®().(P,Q)]]r |U[[a™2(X : T).(P,Q)]]a =

N 5 N 5 M=N N-Z&
(E-NEW) o aoh TN (E-PAR) N|7 (E-STR) i
va . — —_— —_

process either by allowing the movement to the new location, or by choosing
the safety process.

Regarding the behaviour of the tD7 system, we can say that a nondeter-
ministic method is applied to select two interacting processes for each com-
munication channel at each location of a distributed system. Afterwords the
reduction rules are applied, and the communications are performed. ¢a is
applied to the processes which do not enter in any communication. The type
environments of the communicating processes are affected the application of ¢
function. We can say that a system described with ¢ D satisfies the following
properties [5]:

e Time Determinism: at each time only one reduction rule can be applied.
A possible problem could appear only if we apply Rr-IDLE when we can
apply a communication rule. However this is not possible because Rp-IDLE
is applied only if the process does not enter in any communication (#4).

 Maximal Progress: a process cannot delay if it can enter a communica-
tion.

e Time Continuity: to go from a process P at time ¢, to a process P” at
time ¢t + At, we must go through all the intermediate time steps of the
interval [¢,t 4+ At].

Some papers which discuss the time problem in distributed systems con-
sider a global clock synchronising all the timers. Recent work [9] on Network

17

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

Time Synchronisation Protocol (NTP) shows that it is possible to achieve time
synchronisation in real applications. Having this technology we can suppose
that the theoretical assumption about a universal clock is practical rather
than speculation. Our global timing function ¢ has to apply the local time-
stepping function ¢ for the locations of the distributed system. If we adopt
the NTP synchronisation model, we can get a guaranteed frequency and local
oscillator phase precision of no more than a few milliseconds, which in many
cases is acceptable.

3 Soundness of tDr

Regarding the soundness of t D7, we follow a method based on subject reduc-
tion and type safety |4] used also in proving the soundness of Dm. This is
a syntactic approach, in contrast to other approaches based on denotational
semantics or structural operational semantics.

Theorem 3.1 (Subject reduction) For all tagged located processes
(a) If N = N’ then T IF N if and only if T IF N'.
(b) If N — N’ then T' I+ N if and only if T' |- N'.

Proof: Part (a) is in fact Theorem 2.10; its proof is in Section 2.2.

Part () is similar to the result presented in [11] which asserts the consistency
between the static and the dynamic semantics. We use the same technique,
and proceed by induction on the depth of inference for N — N’. We also use
Lemma 2.7 which relates time and type environments, and Lemma 2.8 which
relates time and communication channels. More details can be found in [12].

Case inferred from (Rp-IDLE). This is covered by Lemma 2.8.

Case inferred from (Rp-RES). From the hypothesis we know that I' IF (va@F :
A)N. This means that I'{a@k : A} I N, and according to the induction
hypothesis we have I' IF N’. Since I'{a@k : A} <: T, then by applying the
weakening property of Proposition 2.6 we get I'{a@Qk : A} I N’. Simply
applying again (N-NEWCH) we get ' IF (va@Fk : A)N'.

Case inferred from (Rp-COM1 or Rp-COM2). These two related rules can
be treated in the same way. Let us consider the first one. Starting from
L IF @) (P,Q)]a | [[a®?(X : T).(P,Q")]]a and applying (N-STR)
we get ' IF [[a®1(0).(P,Q)]]a (*) and T IF [[[a®?(X : T).(P",Q)]]ar (**).
By (N-RUN) and (*) we have A F; a®!(v).(P,Q) and with (**) we have
A" a® (X 2 T).(P', Q). By applying (T-W) we get A ; P which together
with (N-RUN) give the statement I' I [[[P]]a. We also have A I, v : T and the
subtyping reactions I' <: A, I" <: A’ which means that A(l,u) and A'(l,u)
must agree on the type they use. So by weakening we get A'{v@[: T} v : T.

Now it is the moment to consider the difference between (Rp-COM1) and
(Rp-COM?2), difference given by the typing rule used for the type of the in-

18

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

put channel. By applying (T-R) we get A'{X@Ql : T} F, P'. We denote
by A” the type environment A’{v@l : T}. Thus, by weakening we get
A"{X@l : T} F; P', and we can use the substitution lemma of |6] to ob-
tain A” F; P'{Y/x}. However I' <: A” and so, by applying (N-RUN), we get
I IE I[P {Yx }]arwarry. We apply Lemma 2.7 two times, and also (N-STR)
to get the result I' b o ([[[P]]r) | ¢ ({[P{Y x }]arwarry)-

It is easy to prove the second inference for (Rp-COM2), but we have to pay
attention to the rules we use, because the type of the channel is now different.

Case inferred from (Rp-PAR). We have I' IF N| M which by applying (N-
STR) gives us I' IF N and I IF M. We can also infer by induction that I' = N'.
By Lemma 2.8 we have that ' IF ¢(M), and we can apply again (N-STR)
obtaining the result I' I N | ¢(M). For the case when M reduces to M’ by
other rule than (Rp-IDLE) (i.e., it is not affected by the passage of time), the
proof steps are easy to find (and left to the reader).

Thus we have concluded the subject reduction proof for the typing system
with temporary resources. O

Subject reduction assures us that once well-typed, a process remains well-
typed during its evolution. Note that well-typedness must be preserved by
both equivalence rules and reduction rules. In the following we give a result
of type safety which is necessary to have a complete proof of the soundness
property of tDm. The type safety property states that if a system is well-typed,

err
then it cannot generate runtime errors, and this is denoted by P +/—.

Theorem 3.2 (Type safety)

err

We have N v/— for all tagged located processes N, and all type environments
I' such that T' I N.

Proof: The outline of the proof follows a method which proves the contra-
positive, namely if N gives rise to a runtime error (N) then N cannot be
well-typed under any type environment I' (I' |f N for all T'). In [4] the authors
use the same statement as a lemma to prove that the faulty expressions are
untypable. We use induction on the definition of the runtime errors, and have

a proof case for each rule of Table 9.

Case inferred from (E-SND). The rule says that [[a®!(v).(P,Q)]]r — if
I'(l,a) is defined and I'(l,v) #£: wobj(I'(l,a)). Let us consider that there is a
type environment A such that the process generating a runtime error is well-
typed under this environment, i.e., A I+ [[[a®!!(v).(P,Q)]]r. This means that
A <:T and T' F; a®!{v).(P, Q). Therefore there are two typing rules which
can be applied, depending on the type of the output channel. If a : — & I'(1),
then we have a contradiction with the fact that I'({, a) must be defined from the
definition of the rule. Otherwise we have to use rule (T-W), obtaining I' ; a :
res{w(T)}At and I' =, v : T'. Statement I' =, v : T implies that I'(l,v) <: T.
From I' by a : res{w(T)} At we get I'(l,a) = res{w(T)} (by definition), which

19

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

by application of the function wobj leads to wobj(I'(l,a)) = T. Together with
I'(l,v) <: T, this leads us to the contradiction I'(l,v) <: wobj(I'(l,a)).

Case inferred from (E-GO). We have [[[gok.(P, Q)]]r +— if T'(k) is defined
and I'(k) #£: loc{go}. We consider that there exists a type environment A such
that A I [[gok.(P,Q)]]r, and try to see if we can conclude a contradiction.
If the location k is not defined in the type environment I', then we can use
(T-GO1); however this would result in a contradiction. By using (T-GO2),
we have I'(k) : loc{go} which means that ['(k) <: loc{go}; we get again a
contradiction. Therefore we have the following statement: there is no type
environment A such that A IF l[[gok.(P,Q)]|r and I[[gok.(P,Q)]]r .

Case inferred from (E-RCV). We consider that there exists a type environ-
ment A such that A I [[[a®?(X : T).(P,Q)]]r. From this we have that A <: T’
and I b a®2(X : T).(P,Q). If we consider our input channel to be reading
only, then we apply the rule (T-RO) and we get I' b, a : res{ro(T)}At. We
immediately have I'(l,a) = res{ro(T")}, and by applying the function roobj
we get roobj(I'(l,a)) = T, and thus roobj(I'(l,a)) <: T, contradicting the
definition.

Case inferred from (E-COMM). We use the same method as before, and con-
sider that there is a type environment A’ such that A’ I+ [[a®!{v).(P, Q)]]r |
[a®'?2(X : T).(P',Q")]]a. By applying the rule (N-STR), and then (N-RUN),
we get A/ <: T, A’ <: A, and T' F; a®1(v).(P,Q), A a®'2(X : T).(P', Q).
Using the rule (T-W), we get I' i, a : res{w(T)} which means that I'(l,a) =
res{w(T)}. We apply the function wobj and get wobj(I'(l,a)) =T (1). We
suppose that the channel a under type environment A is an r() channel, and
infer from A b a®'?2(X : T).(P', Q') that Al a : res{r(T)}. As before, we
can apply the function robj and get robj(A(l,a)) =T (2). From (1) and (2)
we have the contradiction wobj(I'(1,a)) <: robj(A(l, a)).

Case inferred from (E-SUBC), (E-NEW), (E-PAR) and (E-STR). These rules
are the same as in D7, and the proofs are natural. O

4 Conclusion

Timed systems represent an active field, and there are many papers devoted
to this topic. In the following we compare our approach with a recent paper
|7| having some common features. The authors introduce webr, a calculus
for distributed systems with locations, and treat failures and time. They also
use a time-stepping function to decrease the time stamps. FEach location has
a private clock, but the clocks are not synchronised by a universal clock. In
webm the time stamp is attached to a transaction expression as a timeout for
an entire process (a series of actions). In our calculus, each channel has a
private timer which measures the timeout for a communication, and not for a

20

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

series of communications. An important difference between our calculus and
webr is the possibility of tDm to express resource access constraints by using
a typing system.

Another timed extension of the m-calculus which shares common features
with our calculus is presented in [8]. The main contribution of m RT-calculus is
the introduction of a timeout operator. The behaviour of the timeout operator
is the same as the behaviour of a timed channel in our calculus. The authors
also adopt a discrete time domain and synchronisation with a global clock.
Our calculus respects three of the time properties treated in 7 RT: time de-
terminism, time continuity and maximal progress. The other time properties
treated by the authors are specific to the design choices adopted in T7RT'.

The actions in our approach are atomic as in the both models above.
The communication of a name, and the moving with the go operator are
supposed to take no time. Instantaneous actions are also found in [2], where an
extension of the 7-calculus with time is studied. An extension with locations
to this timed m-calculus () is introduced. However types are not taken into
consideration.

Our calculus adds timers on output channels, and timers on channel types;
these features appear to be new. The combination between the quantitative
constraints imposed by timers and the resource access constraints imposed by
the typing system provides modelling power to the new formalism tDw. We
are interested in modelling molecular networks and biological system [3]. In
molecular networks there are strict rules which determine the next reaction
a molecule can take part in. These are based on reaction times, quantitative
coefficients, putative times and other external stimuli. Time represents an
important quantitative measure in molecular networks, able to impose strong
constraints on the interactions between molecules or complexes.

References

[1] Bengtsson, J. and W. Yi, Timed automata: Semantics, algorithms and tools, in:
J. Desel, W. Reisig and G. Rozenberg, editors, Lectures on Concurrency and
Petri Nets, Lecture Notes in Computer Science 3098 (2004), pp. 87-124.

[2] Berger, M., “Towards Abstractions for Distributed Systems”, Ph.D. Thesis,
Imperial College, Department of Computing (2002).

[3] Ciobanu, G. and G. Rozenberg, editors, “Modelling in Molecular Biology”,
Natural Computing Series, Springer, (2004).

[4] Felleisen, M. and A. Wright, A syntactic approach to type soundness, Information
and Computation 115 (1994), pp. 38-94.

[5] Hennessy, M. and T. Regan, A process algebra for timed systems, Information
and Computation 117 (1995), pp. 221 239.

[6] Hennessy, M. and J. Riely, Resource Access Control in Systems of Mobile Agents,
Information and Computation 173(1) (2002), pp. 82-120.

21

www.manharaa.com

NALALIIVILAd WAV LUINAVIN Y LAV VAWAW A AN 4 WAV AAV S AV Y

[7] Laneve, C. and G. Zavattaro, Foundations of web transactions., in: V. Sassone,
editor, Foundations of Software Science and Computational Structures, Lecture
Notes in Computer Science 3441 (2005), pp. 282-298.

[8] Lee, J. and J. Zic, On modeling real-time mobile processes, in: Proceedings 25th
Australasian Conference on Computer Science (2002), pp. 139-147.

[9] Mills, D., A brief history of NTP time: memoirs of an internet timekeeper,
Computer Communication Review 33 (2003), pp. 9-21.

[10] Milner, R., J. Parrow and D. Walker, A calculus of mobile processes (i-ii),
Information and Computation 100 (1992), pp. 1-77.

[11] Milner, R. and M. Tofte, Co-induction in relational semantics, Theoretical
Computer Science 87 (1991), pp. 209-220.

[12]| Prisacariu, C. and G. Ciobanu, Timed distributed 7-calculus, Technical Report
FML-05-01, Formal Methods Laboratory, Institute of Computer Science,
Romanian Academy (2005).

22

www.manharaa.com

	Introduction
	Syntax and Semantics of tD
	 tD Syntax
	Typing System
	Operational Semantics

	Soundness of tD
	Conclusion
	References

